更改

跳到导航 跳到搜索
第49行: 第49行:  
An important goal is to describe the fixed points, or steady states of a given dynamical system; these are values of the variable that don't change over time. Some of these fixed points are attractive, meaning that if the system starts out in a nearby state, it converges towards the fixed point.
 
An important goal is to describe the fixed points, or steady states of a given dynamical system; these are values of the variable that don't change over time. Some of these fixed points are attractive, meaning that if the system starts out in a nearby state, it converges towards the fixed point.
   −
描述给定动力系统的不动点或'''<font color="red">定态</font> <font color="blue">稳态</font>Steady States'''是一个重要的目标。不动点或<font color="red">定态</font> <font color="blue">稳态</font>的变量值不会随时间的变化而变化。<font color="red">一些不动点是有吸引力的(attractive),即如果系统的初始值在它的附近,系统最终会收敛到这个不动点。</font><font color="blue"> 某些不动点被称为“吸引子”,意味着如果系统即使不在它附近的状态开始,最终也会收敛到这些不动点。</font>
+
描述给定动力系统的不动点或'''<font color="red">定态</font> <font color="blue">稳态</font>Steady States'''是一个重要的目标。不动点或<font color="red">定态</font> <font color="blue">稳态</font>的变量值不会随时间的变化而变化。一些不动点是有吸引力的(attractive),即如果系统的初始值在它的附近,系统最终会收敛到这个不动点。
      第57行: 第57行:  
Similarly, one is interested in periodic points, states of the system that repeat after several timesteps. Periodic points can also be attractive. Sharkovskii's theorem is an interesting statement about the number of periodic points of a one-dimensional discrete dynamical system.
 
Similarly, one is interested in periodic points, states of the system that repeat after several timesteps. Periodic points can also be attractive. Sharkovskii's theorem is an interesting statement about the number of periodic points of a one-dimensional discrete dynamical system.
   −
人们还对动力系统的'''周期点 Periodic Points'''感兴趣,即系统在几个时间步之后会不断重复的状态。周期点也可以是有吸引力的。Sharkovskii定理描述了一维离散动力系统的周期点的个数。
+
人们还对动力系统的'''周期点 Periodic Points'''感兴趣,<font color='red'>即系统在几个时间步之后会不断重复的状态。</font><font color='blue'>即系统在重复几个时间步之后的状态。</font>周期点也可以是有吸引力的。Sharkovskii定理描述了一维离散动力系统的周期点的个数。
<font color='blue'>类似地,另一个研究兴趣是'''周期点 Periodic Points''',即系统在重复几个时间步之后的状态。周期点也可以是吸引子。Sharkovskii定理描述了一维离散动力系统的周期点的个数。</font>
       
106

个编辑

导航菜单