更改

跳到导航 跳到搜索
删除606字节 、 2020年7月12日 (日) 13:24
无编辑摘要
第77行: 第77行:  
Philosophers often understand emergence as a claim about the etiology of a system's properties. An emergent property of a system, in this context, is one that is not a property of any component of that system, but is still a feature of the system as a whole. Nicolai Hartmann (1882-1950), one of the first modern philosophers to write on emergence, termed this a categorial novum (new category).
 
Philosophers often understand emergence as a claim about the etiology of a system's properties. An emergent property of a system, in this context, is one that is not a property of any component of that system, but is still a feature of the system as a whole. Nicolai Hartmann (1882-1950), one of the first modern philosophers to write on emergence, termed this a categorial novum (new category).
   −
哲学家通常把涌现理解为一种对系统特性的病因学的主张。在这个上下文中,系统的涌现属性不是系统的任何组件的属性,但仍然是整个系统的一个特征。尼古拉·哈特曼(1882-1950) ,第一批写出涌现论的现代哲学家之一,把这种现象称为范畴新见习(新范畴)。
+
哲学家通常把涌现理解为一种对系统特性的病因学的主张。在这个上下文中,系统的涌现特性不是系统的任何组件的属性,但仍然是整个系统的一个特征。尼古拉·哈特曼(1882-1950) ,第一批写出涌现论的现代哲学家之一,把这种现象称为范畴新见习(新范畴)。
      第83行: 第83行:       −
===Definitions===
+
===Definitions定义===
   −
Philosophers often understand emergence as a claim about the etiology of a system's properties. An emergent property of a system, in this context, is one that is not a property of any component of that system, but is still a feature of the system as a whole. Nicolai Hartmann (1882-1950), one of the first modern philosophers to write on emergence, termed this a categorial novum (new category).
     −
哲学家通常把涌现理解为一种对系统特性的发生学的主张。在这此文本中,系统的涌现属性不是系统的任何组件各自的属性,但却仍然是整个系统的特征。尼古拉·哈特曼(1882-1950) ,首批写出涌现论的现代哲学家之一,把这种现象称为范畴新见习(新范畴)。
  −
  −
定义
      
This idea of emergence has been around since at least the time of [[Aristotle]].<ref name="Meta">Aristotle, ''[[Metaphysics (Aristotle)]]'', Book Η 1045a 8–10: "... the totality is not, as it were, a mere heap, but the whole is something besides the parts ...", i.e., the whole is other than the sum of the parts.</ref> The many scientists and philosophers<ref>Being Emergence vs. Pattern Emergence: Complexity, Control, and Goal-Directedness in Biological Systems
 
This idea of emergence has been around since at least the time of [[Aristotle]].<ref name="Meta">Aristotle, ''[[Metaphysics (Aristotle)]]'', Book Η 1045a 8–10: "... the totality is not, as it were, a mere heap, but the whole is something besides the parts ...", i.e., the whole is other than the sum of the parts.</ref> The many scientists and philosophers<ref>Being Emergence vs. Pattern Emergence: Complexity, Control, and Goal-Directedness in Biological Systems
第161行: 第157行:  
<blockquote>Every resultant is either a sum or a difference of the co-operant forces; their sum, when their directions are the same – their difference, when their directions are contrary. Further, every resultant is clearly traceable in its components, because these are homogeneous and commensurable. It is otherwise with emergents, when, instead of adding measurable motion to measurable motion, or things of one kind to other individuals of their kind, there is a co-operation of things of unlike kinds. The emergent is unlike its components insofar as these are incommensurable, and it cannot be reduced to their sum or their difference.<ref>
 
<blockquote>Every resultant is either a sum or a difference of the co-operant forces; their sum, when their directions are the same – their difference, when their directions are contrary. Further, every resultant is clearly traceable in its components, because these are homogeneous and commensurable. It is otherwise with emergents, when, instead of adding measurable motion to measurable motion, or things of one kind to other individuals of their kind, there is a co-operation of things of unlike kinds. The emergent is unlike its components insofar as these are incommensurable, and it cannot be reduced to their sum or their difference.<ref>
   −
每个合力要么是合作力的和,要么是合作力的差; 当它们的方向相同时,是它们的和——当它们的方向相反时,则是它们的差。此外,每个成果在其组成部分中都可以清楚地朔源,因为这些组成部分是同质的和有公度的(commensurable)。与涌现(这里需要重新翻译一下)情况不同的是,这不是在可测量的运动中嵌入可测量的运动,或者在同类的其他个体中嵌入某种事物,而是在不同种类的事物之间进行协作自组织。涌现不同于其组成部分,因为这些部分是不可通约的(有共同因子),不能仅仅简化为它们的总和或差异。
+
每个合力要么是合作力的叠加,要么是合作力的相消; 当它们的方向相同时,是它们的和——当它们的方向相反时,则是它们的差。此外,每个成果在其组成部分中都可以清楚地朔源,因为这些组成部分是同质的和'''有公度的 Commensurable'''。与涌现情况不同的是,物,它们不是在可测量的运动中再增加可测量的运动,也不是在同类个体中增加一种事物,而是在不同种类的事物之间进行合作。涌现不同于其组成部分,因为这些部分是不可通约的(有共同因子),不能仅仅简化为它们的总和或差。
 
{{cite book
 
{{cite book
   第276行: 第272行:  
In 1999, economist Jeffrey Goldstein provided a current definition of emergence in the journal Emergence. Goldstein initially defined emergence as: "the arising of novel and coherent structures, patterns and properties during the process of self-organization in complex systems".
 
In 1999, economist Jeffrey Goldstein provided a current definition of emergence in the journal Emergence. Goldstein initially defined emergence as: "the arising of novel and coherent structures, patterns and properties during the process of self-organization in complex systems".
   −
1999年,经济学家杰弗里•戈尔茨坦(Jeffrey Goldstein)在《涌现》(Emergence)杂志上提出了现有的对“涌现”的定义。Goldstein 最初将涌现定义为: “在复杂系统的自组织过程中产生的新颖质的发生、逻辑结构、模式和性质”。
+
1999年,经济学家杰弗里•戈尔茨坦 Jeffrey Goldstein 在《涌现》(Emergence)杂志上提出了现有的对“涌现”的定义。Goldstein 最初将涌现定义为: “在和性质复杂系统自组织过程中产生的新颖而连贯的结构、模式和性质”。
      第316行: 第312行:  
<blockquote><span id="CorningDefn" class="citation">Rules, or laws, have no causal efficacy; they do not in fact 'generate' anything. They serve merely to describe regularities and consistent relationships in nature. These patterns may be very illuminating and important, but the underlying causal agencies must be separately specified (though often they are not). But that aside, the game of chess illustrates ... why any laws or rules of emergence and evolution are insufficient. Even in a chess game, you cannot use the rules to predict 'history' – i.e., the course of any given game. Indeed, you cannot even reliably predict the next move in a chess game. Why? Because the 'system' involves more than the rules of the game. It also includes the players and their unfolding, moment-by-moment decisions among a very large number of available options at each choice point. The game of chess is inescapably historical, even though it is also constrained and shaped by a set of rules, not to mention the laws of physics. Moreover, and this is a key point, the game of chess is also shaped by teleonomic, cybernetic, feedback-driven influences. It is not simply a self-ordered process; it involves an organized, 'purposeful' activity.</span></blockquote>
 
<blockquote><span id="CorningDefn" class="citation">Rules, or laws, have no causal efficacy; they do not in fact 'generate' anything. They serve merely to describe regularities and consistent relationships in nature. These patterns may be very illuminating and important, but the underlying causal agencies must be separately specified (though often they are not). But that aside, the game of chess illustrates ... why any laws or rules of emergence and evolution are insufficient. Even in a chess game, you cannot use the rules to predict 'history' – i.e., the course of any given game. Indeed, you cannot even reliably predict the next move in a chess game. Why? Because the 'system' involves more than the rules of the game. It also includes the players and their unfolding, moment-by-moment decisions among a very large number of available options at each choice point. The game of chess is inescapably historical, even though it is also constrained and shaped by a set of rules, not to mention the laws of physics. Moreover, and this is a key point, the game of chess is also shaped by teleonomic, cybernetic, feedback-driven influences. It is not simply a self-ordered process; it involves an organized, 'purposeful' activity.</span></blockquote>
   −
这些规则,或者说定律,没有其因果效力; 因为它们实际上并不‘产生’任何东西。它们只是用来描述自然界中的规律性和一致性关系。这些模式可能非常重要且给人以启发,但必须分别说明潜在的因果关系(尽管通常不是这样)。但是除此之外,国际象棋游戏说明了... 为什么任何关于出现和进化的法则和规则都是不足自证的。即使在国际象棋游戏中,你也不能用这些规则来预测发生的“历史”——也就是说,任何给定游戏的过程都不能被预测。事实上,你甚至无法可靠地预测下一步棋的走法。为什么?因为系统不仅仅包含游戏规则。它还包括球员和他们的自我展现,每时每刻的决定归于一个可用的大数量选择集内,在每个选择点中。国际象棋是不可避免地具有历史性的游戏,尽管它也受到一系列规则的约束和塑造,在此之上更不用说物理定律了。此外,着重点也在这,国际象棋的游戏也塑形于目的性,控制论,反馈驱动的影响。它不仅仅是一个自我有序的过程,它还包括一个有组织的、“有目的的”活动
+
这些规则,或者说定律,没有其因果效力; 因为它们实际上并不‘产生’任何东西。它们只是用来描述自然界中的规律性和一致性关系。这些模式可能非常重要且给人以启发,但必须分别说明潜在的因果关系(尽管通常不是这样)。但是除此之外,国际象棋游戏说明了为什么任何关于出现和进化的法则和规则都是不足自证的。即使在国际象棋游戏中,你也不能用这些规则来预测发生的“历史”——也就是说,任何给定游戏的过程都不能被预测。事实上,你甚至无法可靠地预测下一步棋的走法。为什么?因为系统不仅仅包含游戏规则。它还包括球员和他们的自我展现,每时每刻的决定归于一个可用的大数量选择集内,在每个选择点中。国际象棋是不可避免地具有历史性的博弈,尽管它也受到一系列规则的约束和塑造,在此之上更不用说物理定律了。此外,着重点也在这,国际象棋的游戏也塑形于目的性,控制论,反馈驱动的影响。它不仅仅是一个自我有序的过程,它还包括一个有组织的、“有目的的”活动
 +
 
 +
===Strong and weak emergence强涌现和弱涌现===
   −
===Strong and weak emergence===
     −
强涌现和弱涌现
      
Usage of the notion "emergence" may generally be subdivided into two perspectives, that of "weak emergence" and "strong emergence". One paper discussing this division is ''Weak Emergence'', by philosopher [[Mark Bedau]]. In terms of physical systems, weak emergence is a type of emergence in which the emergent property is amenable to computer simulation or similar forms of after-the-fact analysis (for example, the formation of a traffic jam, the structure of a flight of starlings or a school of fishes, or the formation of galaxies). Crucial in these simulations is that the interacting members retain their independence. If not (for example in a chemical reaction), a new entity is formed with new, emergent properties: this is called strong emergence, which it is argued cannot be simulated or analysed.
 
Usage of the notion "emergence" may generally be subdivided into two perspectives, that of "weak emergence" and "strong emergence". One paper discussing this division is ''Weak Emergence'', by philosopher [[Mark Bedau]]. In terms of physical systems, weak emergence is a type of emergence in which the emergent property is amenable to computer simulation or similar forms of after-the-fact analysis (for example, the formation of a traffic jam, the structure of a flight of starlings or a school of fishes, or the formation of galaxies). Crucial in these simulations is that the interacting members retain their independence. If not (for example in a chemical reaction), a new entity is formed with new, emergent properties: this is called strong emergence, which it is argued cannot be simulated or analysed.
第346行: 第342行:  
Weak emergence describes new properties arising in systems as a result of the interactions at an elemental level. However, Bedau stipulates that the properties can be determined only by observing or simulating the system, and not by any process of a reductionist analysis. As a consequence the emerging properties are scale dependent: they are only observable if the system is large enough to exhibit the phenomenon. Chaotic, unpredictable behaviour can be seen as an emergent phenomenon, while at a microscopic scale the behaviour of the constituent parts can be fully deterministic.
 
Weak emergence describes new properties arising in systems as a result of the interactions at an elemental level. However, Bedau stipulates that the properties can be determined only by observing or simulating the system, and not by any process of a reductionist analysis. As a consequence the emerging properties are scale dependent: they are only observable if the system is large enough to exhibit the phenomenon. Chaotic, unpredictable behaviour can be seen as an emergent phenomenon, while at a microscopic scale the behaviour of the constituent parts can be fully deterministic.
   −
弱涌现描述了由于元素层次上的相互作用而在系统中产生的新颖质。然而,Mark Bedau规定,只有通过观察或模拟系统才能确定系统的性质,而不是通过任何还原分析的过程。因此,新出现的属性是具规模相关的: 它们只有在系统足够大能够展现这种现象时才能观察到。混乱、不可预知的行为可以看作是一种涌现现象,而在微观尺度上,组成部分的行为可以是完全确定的。
+
弱涌现描述了由于元素层次上的相互作用而在系统中产生的新特性。然而,Mark Bedau规定,只有通过观察或模拟系统才能确定系统的性质,而不是通过任何还原分析的过程。因此,新出现的属性是与规模相关的: 它们只有在系统足够大能够展现这种现象时才能观察到。混乱、不可预知的行为可以看作是一种涌现现象,而在微观尺度上,组成部分的行为可以是完全确定的。
      第366行: 第362行:  
Strong emergence describes the direct causal action of a high-level system upon its components; qualities produced this way are irreducible to the system's constituent parts . The whole is other than the sum of its parts. An example from physics of such emergence is water, which appears unpredictable even after an exhaustive study of the properties of its constituent atoms of hydrogen and oxygen. It follows then that no simulation of the system can exist, for such a simulation would itself constitute a reduction of the system to its constituent parts. .
 
Strong emergence describes the direct causal action of a high-level system upon its components; qualities produced this way are irreducible to the system's constituent parts . The whole is other than the sum of its parts. An example from physics of such emergence is water, which appears unpredictable even after an exhaustive study of the properties of its constituent atoms of hydrogen and oxygen. It follows then that no simulation of the system can exist, for such a simulation would itself constitute a reduction of the system to its constituent parts. .
   −
强涌现描述了一个高级系统对其组成部分的直接因果作用; 这种方式产生的质量不可能还原为系统的组成部分。整体不是各部分的总和。从物理学角度来看,这种现象的一个例子是水,即使对其组成原子氢和氧的性质进行了详尽的研究,水的形成也显得不可预测。因此,不可能存在任何对系统的模拟,因为这种模拟本身将构成对系统组成部分的简化。.
+
强涌现描述了一个高级系统对其组成部分的直接因果作用; 这种方式产生的质量不可能还原为系统的组成部分。
 +
  --[[用户:趣木木|趣木木]]([[用户讨论:趣木木|讨论]])质量/品质 存疑
 +
 
 +
整体不是各部分的总和。从物理学角度来看,这种现象的一个例子是水,即使对其组成原子氢和氧的性质进行了详尽的研究,水的形成也显得不可预测。因此,不可能存在任何对系统的模拟,因为这种模拟本身将构成对系统组成部分的简化。.
 +
 
             +
====Rejecting the distinction拒绝区分====
   −
====Rejecting the distinction====
     −
拒绝区分
      
However, biologist Peter Corning has asserted that "the debate about whether or not the whole can be predicted from the properties of the parts misses the point. Wholes produce unique combined effects, but many of these effects may be co-determined by the context and the interactions between the whole and its environment(s)" {{Harv|Corning|2002}}. In accordance with his '''Synergism Hypothesis''' {{Harv|Corning 1983|2005}}, Corning also stated: "It is the [[synergistic]] effects produced by wholes that are the very cause of the evolution of complexity in nature." Novelist [[Arthur Koestler]] used the metaphor of [[Janus]] (a symbol of the unity underlying complements like open/shut, peace/war) to illustrate how the two perspectives (strong vs. weak or [[holistic]] vs. [[reductionistic]]) should be treated as non-exclusive, and should work together to address the issues of emergence {{Harv|Koestler|1969}}. Theoretical physicist PW Anderson states it this way:
 
However, biologist Peter Corning has asserted that "the debate about whether or not the whole can be predicted from the properties of the parts misses the point. Wholes produce unique combined effects, but many of these effects may be co-determined by the context and the interactions between the whole and its environment(s)" {{Harv|Corning|2002}}. In accordance with his '''Synergism Hypothesis''' {{Harv|Corning 1983|2005}}, Corning also stated: "It is the [[synergistic]] effects produced by wholes that are the very cause of the evolution of complexity in nature." Novelist [[Arthur Koestler]] used the metaphor of [[Janus]] (a symbol of the unity underlying complements like open/shut, peace/war) to illustrate how the two perspectives (strong vs. weak or [[holistic]] vs. [[reductionistic]]) should be treated as non-exclusive, and should work together to address the issues of emergence {{Harv|Koestler|1969}}. Theoretical physicist PW Anderson states it this way:
第380行: 第379行:  
However, biologist Peter Corning has asserted that "the debate about whether or not the whole can be predicted from the properties of the parts misses the point. Wholes produce unique combined effects, but many of these effects may be co-determined by the context and the interactions between the whole and its environment(s)" . In accordance with his Synergism Hypothesis , Corning also stated: "It is the synergistic effects produced by wholes that are the very cause of the evolution of complexity in nature." Novelist Arthur Koestler used the metaphor of Janus (a symbol of the unity underlying complements like open/shut, peace/war) to illustrate how the two perspectives (strong vs. weak or holistic vs. reductionistic) should be treated as non-exclusive, and should work together to address the issues of emergence . Theoretical physicist PW Anderson states it this way:
 
However, biologist Peter Corning has asserted that "the debate about whether or not the whole can be predicted from the properties of the parts misses the point. Wholes produce unique combined effects, but many of these effects may be co-determined by the context and the interactions between the whole and its environment(s)" . In accordance with his Synergism Hypothesis , Corning also stated: "It is the synergistic effects produced by wholes that are the very cause of the evolution of complexity in nature." Novelist Arthur Koestler used the metaphor of Janus (a symbol of the unity underlying complements like open/shut, peace/war) to illustrate how the two perspectives (strong vs. weak or holistic vs. reductionistic) should be treated as non-exclusive, and should work together to address the issues of emergence . Theoretical physicist PW Anderson states it this way:
   −
然而,生物学家彼得 · 康宁声称,“关于是否可以从部分特性来预测整体特性的争论并没有抓住要点。整体产生独特的综合效应,但其中许多效应可能由环境和整体及其环境之间的相互作用共同决定”。根据他的协同论假说,康宁还指出: “正是整体产生的协同效应才是自然界复杂性进化的根本原因。”小说家亚瑟 · 凯斯特勒(Arthur Koestler)用“两面神”(Janus)这个隐喻(两面神是开 / 关、和平 / 战争等潜在补充的统一的象征)来说明两种观点(强与弱、整体与简化论)应该如何被视为非排他性的,并且应该一起解决涌现的问题。理论物理学家 PW Anderson 是这样说的:
+
然而,生物学家彼得 · 康宁声称,“关于是否可以从部分特性来预测整体特性的争论并没有抓住要点。整体产生独特的综合效应,但其中许多效应可能由环境和整体及其环境之间的相互作用共同决定”。根据他的协同论假说,康宁还指出: “正是整体产生的协同效应才是自然界复杂性进化的根本原因。”小说家'''亚瑟 · 凯斯特勒 Arthur Koestler''' 用“两面神” Janus 这个隐喻(两面神是开 / 关、和平 / 战争等潜在补充的统一的象征)来说明两种观点(强与弱、整体与简化论)应该如何被视为非排他性的,并且应该一起解决涌现的问题。理论物理学家 PW Anderson 是这样说的:
      第410行: 第409行:  
<blockquote>Although strong emergence is logically possible, it is uncomfortably like magic. How does an irreducible but supervenient downward causal power arise, since by definition it cannot be due to the aggregation of the micro-level potentialities? Such causal powers would be quite unlike anything within our scientific ken. This not only indicates how they will discomfort reasonable forms of materialism. Their mysteriousness will only heighten the traditional worry that emergence entails illegitimately getting something from nothing.</blockquote>
 
<blockquote>Although strong emergence is logically possible, it is uncomfortably like magic. How does an irreducible but supervenient downward causal power arise, since by definition it cannot be due to the aggregation of the micro-level potentialities? Such causal powers would be quite unlike anything within our scientific ken. This not only indicates how they will discomfort reasonable forms of materialism. Their mysteriousness will only heighten the traditional worry that emergence entails illegitimately getting something from nothing.</blockquote>
   −
尽管强烈的涌现在逻辑上是可能的,但它就像魔术一样令人不安。既然根据定义它不可能是由于微观层面潜力的集合,那么一个不可减少但是附带的向下因果力量是如何产生的呢?这种因果关系的力量与我们科学知识范围内的任何东西都完全不同。这不仅表明他们将如何不适应物质主义的合理形式。他们的神秘只会加剧传统的担忧,即担心出现需要从虚无中获得非法的东西
+
尽管强烈的涌现在逻辑上是可能的,但它就像魔术一样令人不安。既然根据定义它不可能是由于微观层面潜力的聚集,那么一种不可还原但随时间而来的向下因果力是如何产生的呢?这种因果关系的力量与我们科学知识范围内的任何东西都完全不同。这不仅表明他们将如何不适应物质主义的合理形式。他们的神秘只会加剧传统的担忧,即出现意味着非法地从无到有。
 
        第430行: 第428行:  
<blockquote>In our schematic example above, we concluded that M causes M∗ by causing P∗. So M causes P∗. Now, M, as an emergent, must itself have an emergence base property, say P. Now we face a critical question: if an emergent, M, emerges from basal condition P, why cannot P displace M as a cause of any putative effect of M? Why cannot P do all the work in explaining why any alleged effect of M occurred? If causation is understood as nomological (law-based) sufficiency, P, as M's emergence base, is nomologically sufficient for it, and M, as P∗'s cause, is nomologically sufficient for P∗. It follows that P is nomologically sufficient for P∗ and hence qualifies as its cause…If M is somehow retained as a cause, we are faced with the highly implausible consequence that every case of downward causation involves overdetermination (since P remains a cause of P∗ as well). Moreover, this goes against the spirit of emergentism in any case: emergents are supposed to make distinctive and novel causal contributions.</blockquote>
 
<blockquote>In our schematic example above, we concluded that M causes M∗ by causing P∗. So M causes P∗. Now, M, as an emergent, must itself have an emergence base property, say P. Now we face a critical question: if an emergent, M, emerges from basal condition P, why cannot P displace M as a cause of any putative effect of M? Why cannot P do all the work in explaining why any alleged effect of M occurred? If causation is understood as nomological (law-based) sufficiency, P, as M's emergence base, is nomologically sufficient for it, and M, as P∗'s cause, is nomologically sufficient for P∗. It follows that P is nomologically sufficient for P∗ and hence qualifies as its cause…If M is somehow retained as a cause, we are faced with the highly implausible consequence that every case of downward causation involves overdetermination (since P remains a cause of P∗ as well). Moreover, this goes against the spirit of emergentism in any case: emergents are supposed to make distinctive and novel causal contributions.</blockquote>
   −
在我们上面的示意图中,我们得出结论,m 引起 m * 是由 p * 引起的。所以 M 引起 P∗.现在,m,作为一个涌现,本身必须有一个涌现基本性质,比如 p。 现在我们面临一个关键的问题: 如果一个涌现,m,出现在基础条件 p下,为什么不能 p 置换 m 作为任何假定的影响的原因?为什么 p 不能做所有的工作来解释为什么会发生所谓的 m 效应?如果因果关系被理解为定律上的充分性,那么 p,作为 m 的涌现基础,在定律上就足够了,m,作为 p * 的原因,在定律上就足够了。如果 m 以某种方式作为原因被保留下来,我们就会面临一个非常难以置信的结果,那就是每一个向下的因果关系都牵涉到过度决定(因为 p 也是 p * 的原因)。此外,这在任何情况下都与涌现主义的精神背道而驰: 涌现主义者应该做出独特而新颖的因果贡献。 / blockquote
+
在我们上面的示意图中,我们得出结论,m 引起 m * 是由 p * 引起的。所以 M 引起 P∗.现在,m,作为一个涌现,本身必须有一个涌现基本性质,比如 p。 现在我们面临一个关键的问题: 如果一个涌现m,出现在基础条件 p下,为什么不能 p 置换 m 作为任何假定的影响的原因?为什么 p 不能做所有的工作来解释为什么会发生所谓的 m 效应?如果因果关系被理解为定律上的充分性,那么 p,作为 m 的涌现基础,在定律上就足够了,m,作为 p * 的原因,在定律上就足够了。如果 m 以某种方式作为原因被保留下来,我们就会面临一个非常难以置信的结果,那就是每一个向下的因果关系都牵涉到过度决定(因为 p 也是 p * 的原因)。此外,这在任何情况下都与涌现主义的精神背道而驰: 涌现主义者应该做出独特而新颖的因果贡献。 / blockquote
      第440行: 第438行:  
If M is the cause of M∗, then M∗ is overdetermined because M∗ can also be thought of as being determined by P. One escape-route that a strong emergentist could take would be to deny downward causation. However, this would remove the proposed reason that emergent mental states must supervene on physical states, which in turn would call physicalism into question, and thus be unpalatable for some philosophers and physicists.
 
If M is the cause of M∗, then M∗ is overdetermined because M∗ can also be thought of as being determined by P. One escape-route that a strong emergentist could take would be to deny downward causation. However, this would remove the proposed reason that emergent mental states must supervene on physical states, which in turn would call physicalism into question, and thus be unpalatable for some philosophers and physicists.
   −
如果 m * 是 m * 的原因,那么 m * 就被过分确定了,因为 m * 也可以被认为是由 p 决定的。 一个强涌现论者可以采取的一条退路是否定向下的因果关系。然而,这将消除涌现的精神状态必须附加在物理状态上的理由,这反过来会使物理主义成为问题,因此对于一些哲学家和物理学家来说是难以接受的。
+
如果 m 是 m * 的原因,那么 m * 就被过分确定了,因为 m * 也可以被认为是由 p 决定的。 一个强涌现论者强大的紧急事件者可能采取的逃避途径是否认向下的因果关系。然而,这将消除涌现的精神状态必须附加在物理状态上的理由,这反过来会使物理主义受到质疑,因此对于一些哲学家和物理学家来说是难以接受的。
      第451行: 第449行:     
与此同时,其他人则致力于发掘强涌现的分析证据。2009年,顾等人。提出了一类具有不可计算的宏观属性的物理系统。更准确地说,如果一个人能够从这些系统的微观描述计算出这些系统的某些宏观性质,那么他就能够解决计算机科学中已知的无法判定的计算问题。谷等人。得出结论
 
与此同时,其他人则致力于发掘强涌现的分析证据。2009年,顾等人。提出了一类具有不可计算的宏观属性的物理系统。更准确地说,如果一个人能够从这些系统的微观描述计算出这些系统的某些宏观性质,那么他就能够解决计算机科学中已知的无法判定的计算问题。谷等人。得出结论
 
+
  --[[用户:趣木木|趣木木]]([[用户讨论:趣木木|讨论]])探究一下是Gu  是谷还是顾
      第462行: 第460行:  
尽管宏观概念对于理解我们的世界来说是必不可少的,大部分的基础物理学已经致力于寻找一个万有理论,一个完美描述所有基本粒子行为的方程组。这种认为这是科学目标的观点,部分依赖于这样一个理论的基本原理,即这样一个理论将允许我们得出所有宏观概念的行为,至少在原则上是这样的。我们提供的证据表明,这种观点可能过于乐观。“万有理论”是完全理解宇宙所必需的许多要素之一,但不一定是唯一的要素。从第一原理发展宏观定律可能不仅仅涉及系统的逻辑,而且可能需要实验、模拟或洞察力的推测。 / blockquote
 
尽管宏观概念对于理解我们的世界来说是必不可少的,大部分的基础物理学已经致力于寻找一个万有理论,一个完美描述所有基本粒子行为的方程组。这种认为这是科学目标的观点,部分依赖于这样一个理论的基本原理,即这样一个理论将允许我们得出所有宏观概念的行为,至少在原则上是这样的。我们提供的证据表明,这种观点可能过于乐观。“万有理论”是完全理解宇宙所必需的许多要素之一,但不一定是唯一的要素。从第一原理发展宏观定律可能不仅仅涉及系统的逻辑,而且可能需要实验、模拟或洞察力的推测。 / blockquote
   −
===Emergence and interaction===
+
===Emergence and interaction涌现和相互作用===
 +
 
   −
涌现和相互作用
      
Emergent structures are patterns that emerge via the collective actions of many individual entities. To explain such patterns, one might conclude, per [[Aristotle]],<ref name="Meta" /> that emergent structures are other than the sum of their parts on the assumption that the emergent order will not arise if the various parts simply interact independently of one another. However, there are those who [[A New Kind of Science#Simple programs|disagree]].<ref>{{cite web|url= http://www.physlink.com/Education/essay_weinberg.cfm|title= A Designer Universe?|author= Steven Weinberg|accessdate= 2008-07-14|quote= A version of the original quote from address at the Conference on Cosmic Design, American Association for the Advancement of Science, Washington, D.C. in April 1999|url-status= live|archiveurl= https://web.archive.org/web/20100519145647/http://www.physlink.com/education/essay_weinberg.cfm|archivedate= 2010-05-19}}</ref> According to this argument, the interaction of each part with its immediate surroundings causes a complex chain of processes that can lead to order in some form. In fact, some systems in nature are observed to exhibit emergence based upon the interactions of autonomous parts, and some others exhibit emergence that at least at present cannot be reduced in this way. In particular [[Renormalization group|renormalization]] methods in theoretical physics enable scientists to study systems that are not tractable as the combination of their parts.<ref>{{Cite journal|last= Longo|first= Giuseppe|last2= Montévil|first2= Maël|last3= Pocheville|first3= Arnaud|date= 2012-01-01|title= From bottom-up approaches to levels of organization and extended critical transitions|journal= Frontiers in Physiology|volume= 3|page= 232|doi= 10.3389/fphys.2012.00232|pmc= 3429021|pmid= 22934001}}</ref>
 
Emergent structures are patterns that emerge via the collective actions of many individual entities. To explain such patterns, one might conclude, per [[Aristotle]],<ref name="Meta" /> that emergent structures are other than the sum of their parts on the assumption that the emergent order will not arise if the various parts simply interact independently of one another. However, there are those who [[A New Kind of Science#Simple programs|disagree]].<ref>{{cite web|url= http://www.physlink.com/Education/essay_weinberg.cfm|title= A Designer Universe?|author= Steven Weinberg|accessdate= 2008-07-14|quote= A version of the original quote from address at the Conference on Cosmic Design, American Association for the Advancement of Science, Washington, D.C. in April 1999|url-status= live|archiveurl= https://web.archive.org/web/20100519145647/http://www.physlink.com/education/essay_weinberg.cfm|archivedate= 2010-05-19}}</ref> According to this argument, the interaction of each part with its immediate surroundings causes a complex chain of processes that can lead to order in some form. In fact, some systems in nature are observed to exhibit emergence based upon the interactions of autonomous parts, and some others exhibit emergence that at least at present cannot be reduced in this way. In particular [[Renormalization group|renormalization]] methods in theoretical physics enable scientists to study systems that are not tractable as the combination of their parts.<ref>{{Cite journal|last= Longo|first= Giuseppe|last2= Montévil|first2= Maël|last3= Pocheville|first3= Arnaud|date= 2012-01-01|title= From bottom-up approaches to levels of organization and extended critical transitions|journal= Frontiers in Physiology|volume= 3|page= 232|doi= 10.3389/fphys.2012.00232|pmc= 3429021|pmid= 22934001}}</ref>
第472行: 第470行:  
涌现结构是通过许多单个实体的集体行动而出现的模式。为了解释这种模式,人们可能会得出结论,按照亚里士多德的说法,每个部分与其周围环境的相互作用导致了一系列复杂的过程,这些过程可以导致某种形式的秩序。事实上,我们观察到自然界中的一些系统是基于自治部分的相互作用而呈现出涌现的,而另一些系统则呈现出涌现,至少目前不能以这种方式进行简化。特别是理论物理学中的重整化方法使得科学家们能够研究那些不能作为各部分组合而易于处理的系统。
 
涌现结构是通过许多单个实体的集体行动而出现的模式。为了解释这种模式,人们可能会得出结论,按照亚里士多德的说法,每个部分与其周围环境的相互作用导致了一系列复杂的过程,这些过程可以导致某种形式的秩序。事实上,我们观察到自然界中的一些系统是基于自治部分的相互作用而呈现出涌现的,而另一些系统则呈现出涌现,至少目前不能以这种方式进行简化。特别是理论物理学中的重整化方法使得科学家们能够研究那些不能作为各部分组合而易于处理的系统。
   −
===主客的品质Objective or subjective quality===
+
===客观或主观的品质Objective or subjective quality===
 +
 
   −
客观或主观的品质
      
Crutchfield regards the properties of complexity and organization of any system as [[Subjectivity|subjective]] [[Quality (philosophy)|qualities]] determined by the observer.
 
Crutchfield regards the properties of complexity and organization of any system as [[Subjectivity|subjective]] [[Quality (philosophy)|qualities]] determined by the observer.
第695行: 第693行:  
在20世纪90年代后殖民主义理论,“新兴文学”一词指的是在全球文学景观中获得势头的当代文本主体。(v. esp.: J.M. Grassin, ed. Emerging Literatures, Bern, Berlin, etc. : Peter Lang, 1996)。从反面看,“涌现文学”更像是文学理论中使用的一个概念。
 
在20世纪90年代后殖民主义理论,“新兴文学”一词指的是在全球文学景观中获得势头的当代文本主体。(v. esp.: J.M. Grassin, ed. Emerging Literatures, Bern, Berlin, etc. : Peter Lang, 1996)。从反面看,“涌现文学”更像是文学理论中使用的一个概念。
   −
==涌现的特性和过程 思无涯领啦==
+
==涌现的特性和过程 ==
      第758行: 第756行:  
涌现有助于解释分割谬误是一个谬论。
 
涌现有助于解释分割谬误是一个谬论。
   −
==Emergent structures in nature 自然界中的涌现结构 嘉树领取啦==
+
==Emergent structures in nature 自然界中的涌现结构 ==
      第973行: 第971行:  
Life is a major source of complexity, and evolution is the major process behind the varying forms of life. In this view, evolution is the process describing the growth of complexity in the natural world and in speaking of the emergence of complex living beings and life-forms, this view refers therefore to processes of sudden changes in evolution.
 
Life is a major source of complexity, and evolution is the major process behind the varying forms of life. In this view, evolution is the process describing the growth of complexity in the natural world and in speaking of the emergence of complex living beings and life-forms, this view refers therefore to processes of sudden changes in evolution.
   −
生命是复杂性的主要来源,进化是不同生命形式背后的主要过程。这种观点认为,进化是描述自然界中复杂性增长的过程,在谈到复杂生物和生命形式的涌现时,这种观点因此是指进化中的突然变化的过程。
+
生命是复杂性的主要来源,进化是不同生命形式背后的主要过程。这种观点认为,进化是描述自然界中复杂性增长的过程,在谈到复杂生物和生命形式的涌现时,这种观点是指进化中的突然变化的过程。
      第1,017行: 第1,015行:  
<blockquote>[In] evolutionary processes, causation is iterative; effects are also causes. And this is equally true of the synergistic effects produced by emergent systems. In other words, emergence itself... has been the underlying cause of the evolution of emergent phenomena in biological evolution; it is the synergies produced by organized systems that are the key.}}</blockquote>
 
<blockquote>[In] evolutionary processes, causation is iterative; effects are also causes. And this is equally true of the synergistic effects produced by emergent systems. In other words, emergence itself... has been the underlying cause of the evolution of emergent phenomena in biological evolution; it is the synergies produced by organized systems that are the key.}}</blockquote>
   −
在进化过程中,因果关系是迭代的; 结果也是原因。这同样适用于由涌现系统产生的'''协同效应 Synergistic Effects'''。换句话说,涌现本身... ... 是生物进化中涌现现象的根本原因; 有组织的系统产生的协同作用才是(进化的)关键。
+
在进化过程中,因果关系是迭代的; 结果也是原因。这同样适用于由涌现系统产生的'''协同效应 Synergistic Effects'''。换句话说,涌现本身... ... 是生物进化中涌现现象的根本原因; 有组织的系统产生的协同作用才是进化的关键。
 
--[[用户:嘉树|嘉树]]([[用户讨论:嘉树|讨论]]) (进化的)是自己加的不知是否合适
 
--[[用户:嘉树|嘉树]]([[用户讨论:嘉树|讨论]]) (进化的)是自己加的不知是否合适
 
[} / blockquote
 
[} / blockquote
第1,060行: 第1,058行:  
A broader example of emergent properties in biology is viewed in the biological organisation of life, ranging from the subatomic level to the entire biosphere. For example, individual atoms can be combined to form molecules such as polypeptide chains, which in turn fold and refold to form proteins, which in turn create even more complex structures. These proteins, assuming their functional status from their spatial conformation, interact together and with other molecules to achieve higher biological functions and eventually create an organism. Another example is how cascade phenotype reactions, as detailed in chaos theory, arise from individual genes mutating respective positioning. At the highest level, all the biological communities in the world form the biosphere, where its human participants form societies, and the complex interactions of meta-social systems such as the stock market.
 
A broader example of emergent properties in biology is viewed in the biological organisation of life, ranging from the subatomic level to the entire biosphere. For example, individual atoms can be combined to form molecules such as polypeptide chains, which in turn fold and refold to form proteins, which in turn create even more complex structures. These proteins, assuming their functional status from their spatial conformation, interact together and with other molecules to achieve higher biological functions and eventually create an organism. Another example is how cascade phenotype reactions, as detailed in chaos theory, arise from individual genes mutating respective positioning. At the highest level, all the biological communities in the world form the biosphere, where its human participants form societies, and the complex interactions of meta-social systems such as the stock market.
   −
从生命的生物组织,从亚原子水平到整个生物圈,我们可以看到生物突现特性的一个更广泛的例子。例如,单个原子可以结合形成多肽链之类的分子,多肽链再折叠形成蛋白质,而蛋白质又形成更复杂的结构。这些蛋白质,从它们的空间构象中获得它们的功能状态,并与其他分子相互作用,实现更高的生物功能,最终创造出一个生物体。另一个例子是'''级联表型反应 Cascade Phenotype Reactions''',如混沌理论中详细描述的,级联表型反应产生于个体基因在特定位置的变异。在最高层次上,世界上所有的生物群落形成了生物圈,其中,人类形成了人类社会,并形成了诸如股票市场等元社会系统的复杂相互作用。
+
从生命的生物组织,从亚原子水平到整个生物圈,我们可以看到生物涌现特性的一个更广泛的例子。例如,单个原子可以结合形成多肽链之类的分子,多肽链再折叠形成蛋白质,而蛋白质又形成更复杂的结构。这些蛋白质,从它们的空间构象中获得它们的功能状态,并与其他分子相互作用,实现更高的生物功能,最终创造出一个生物体。另一个例子是'''级联表型反应 Cascade Phenotype Reactions''',如混沌理论中详细描述的,级联表型反应产生于个体基因在特定位置的变异。在最高层次上,世界上所有的生物群落形成了生物圈,其中,人类形成了人类社会,并形成了诸如股票市场等元社会系统的复杂相互作用。
    
====Emergence of mind 思想的出现====
 
====Emergence of mind 思想的出现====
第1,070行: 第1,068行:  
Among the considered phenomena in the evolutionary account of life, as a continuous history, marked by stages at which fundamentally new forms have appeared - the origin of sapiens intelligence. The emergence of mind and its evolution is researched and considered as a separate phenomenon in a special system knowledge called noogenesis.
 
Among the considered phenomena in the evolutionary account of life, as a continuous history, marked by stages at which fundamentally new forms have appeared - the origin of sapiens intelligence. The emergence of mind and its evolution is researched and considered as a separate phenomenon in a special system knowledge called noogenesis.
   −
智人智力的起源在进化论所考虑的现象中(很重要),它是一个连续的历史,以出现新形式为标志。
+
智人智力的起源在进化论所考虑的现象中很重要,它是一个连续的历史,以出现新形式为标志。
    
--[[用户:嘉树|嘉树]]([[用户讨论:嘉树|讨论]]) 第一句增加(很重要)
 
--[[用户:嘉树|嘉树]]([[用户讨论:嘉树|讨论]]) 第一句增加(很重要)
 +
 
    
心智的涌现及其演化被认为是一个独立的现象,这一特殊的知识系统被称为'''人脑发生 Noogenesis'''。
 
心智的涌现及其演化被认为是一个独立的现象,这一特殊的知识系统被称为'''人脑发生 Noogenesis'''。
   −
==In humanity ==
+
==In humanity在人类学中 ==
     
575

个编辑

导航菜单