第1行: |
第1行: |
− | 此词条暂由彩云小译翻译,未经人工整理和审校,带来阅读不便,请见谅。
| |
− |
| |
− | {{for|the computer game|Independence War 2: Edge of Chaos}}
| |
− |
| |
− |
| |
− |
| |
| [[File:Shish-kebab-skewer-60458 640.jpg|thumb|“The truly creative changes and the big shifts occur right at the edge of chaos,” said Dr. Robert Bilder, a psychiatry and psychology professor at UCLA's Semel Institute for Neuroscience and Human Behavior.<ref>{{cite news|last1=Schwartz|first1=K.|title=On the Edge of Chaos: Where Creativity Flourishes|url=https://ww2.kqed.org/mindshift/2014/05/06/on-the-edge-of-chaos-where-creativity-flourishes/|publisher=KOED|date=2014}}</ref> | | [[File:Shish-kebab-skewer-60458 640.jpg|thumb|“The truly creative changes and the big shifts occur right at the edge of chaos,” said Dr. Robert Bilder, a psychiatry and psychology professor at UCLA's Semel Institute for Neuroscience and Human Behavior.<ref>{{cite news|last1=Schwartz|first1=K.|title=On the Edge of Chaos: Where Creativity Flourishes|url=https://ww2.kqed.org/mindshift/2014/05/06/on-the-edge-of-chaos-where-creativity-flourishes/|publisher=KOED|date=2014}}</ref> |
| | | |
第17行: |
第11行: |
| ]] | | ]] |
| | | |
| + | 混沌边缘是有序和无序之间的过渡空间,这种空间被假设存在于各种各样的系统中。混沌边缘是一个有界的不稳定区域,不断地发生着有序和无序之间的动态相互作用<ref>{{cite web|last1=Complexity Labs|title=Edge of Chaos|url=http://complexitylabs.io/edge-of-chaos/.|website=Complexity Labs|accessdate=August 24, 2016}}</ref>。一个能出现复杂现象的系统往往具有很大的自由度数目,由于非线性的存在,导致在高维相空间中存在一个有很多大于零的Lyapunov特征指数的奇怪吸引子。在这样的奇怪吸引子中存在数目巨大的有序成分和各种各样反映为物理空间有结构、时间上为混沌的成分,这些成分在通常意义下为不稳定。一旦受到某种刺激,按照混沌控制思想及其尚不知原因的原理,很快地、自适应地选择目标并达到目标,这样就导致了各种复杂现象的产生.由于这些成分构成奇怪吸引子中的一个稠集,因而对于目标响应是非常敏感的,这就导致某种不可预测性存在。 |
| | | |
− | | + | 尽管混沌边缘的概念十分抽象且不直观,但它确实在生态学<ref>{{cite journal|last1=Ranjit Kumar Upadhyay|title=Dynamics of an ecological model living on the edge of chaos|journal=Applied Mathematics and Computation|date=2009|volume= 210| issue = 2|pages=455–464|doi=10.1016/j.amc.2009.01.006}}</ref>、商业管理<ref>{{cite web|last1=Deragon|first1=Jay|title=Managing On The Edge Of Chaos|url=http://www.relationship-economy.com/2012/08/managing-on-the-edge-of-chaos/|website=Relationship Economy}}</ref>、心理学<ref>{{cite book|last1=Lawler|first1=E.|last2=Thye|first2=S.|last3=Yoon|first3=J.|title=Order on the Edge of Chaos Social Psychology and the Problem of Social Order|date=2015|publisher=[[Cambridge University Press]]|isbn=9781107433977}}</ref> 、政治科学、社会科学等领域具有诸多应用。物理学家发现几乎所有具有反馈的系统都会适应混沌边缘。<ref>{{cite journal|last1=Wotherspoon|first1=T.|last2=et.|first2=al.|title=Adaptation to the edge of chaos with random-wavelet feedback|journal=J. Phys. Chem. A|date=2009|doi=10.1021/jp804420g|bibcode=2009JPCA..113...19W|volume=113|issue=1|pages=19–22|pmid=19072712}}</ref> |
− | The '''edge of chaos''' is a transition space between [[Orderliness|order]] and [[Randomness|disorder]] that is hypothesized to exist within a wide variety of systems. This transition zone is a region of bounded instability that engenders a constant dynamic interplay between order and disorder.<ref>{{cite web|last1=Complexity Labs|title=Edge of Chaos|url=http://complexitylabs.io/edge-of-chaos/.|website=Complexity Labs|accessdate=August 24, 2016}}</ref>
| |
− | | |
− | The edge of chaos is a transition space between order and disorder that is hypothesized to exist within a wide variety of systems. This transition zone is a region of bounded instability that engenders a constant dynamic interplay between order and disorder.
| |
− | | |
− | 混沌边缘是有序和无序之间的过渡空间,这种空间被假设存在于各种各样的系统中。混沌边缘是一个有界的不稳定区域,不断地发生着有序和无序之间的动态相互作用。
| |
− | --[[用户:沐晨|沐晨]]([[用户讨论:沐晨|讨论]])+可补充:
| |
− | 一个能出现复杂现象的系统往往具有很大的自由度数目,由于非线性的存在,导致在高维相空间中存在一个有很多大于零的Lyapunov特征指数的奇怪吸引子。在这样的奇怪吸引子中存在数目巨大的有序成分和各种各样反映为物理空间有结构、时间上为混沌的成分,这些成分在通常意义下为不稳定。一旦受到某种刺激,按照混沌控制思想及其尚不知原因的原理,很快地、自适应地选择目标并达到目标,这样就导致了各种复杂现象的产生.由于这些成分构成奇怪吸引子中的一个稠集,因而对于目标响应是非常敏感的,这就导致某种不可预测性存在。--[[用户:沐晨|沐晨]]([[用户讨论:沐晨|讨论]])+
| |
− | | |
− | | |
− | Even though the idea of the edge of chaos is abstract and unintuitive, it has many applications in such fields as [[ecology]],<ref>{{cite journal|last1=Ranjit Kumar Upadhyay|title=Dynamics of an ecological model living on the edge of chaos|journal=Applied Mathematics and Computation|date=2009|volume= 210| issue = 2|pages=455–464|doi=10.1016/j.amc.2009.01.006}}</ref> [[business management]],<ref>{{cite web|last1=Deragon|first1=Jay|title=Managing On The Edge Of Chaos|url=http://www.relationship-economy.com/2012/08/managing-on-the-edge-of-chaos/|website=Relationship Economy}}</ref> [[psychology]],<ref>{{cite book|last1=Lawler|first1=E.|last2=Thye|first2=S.|last3=Yoon|first3=J.|title=Order on the Edge of Chaos Social Psychology and the Problem of Social Order|date=2015|publisher=[[Cambridge University Press]]|isbn=9781107433977}}</ref> [[political science]], and other domains of the [[social science]]. [[Physicists]] have shown that adaptation to the edge of chaos occurs in almost all systems with feedback.<ref>{{cite journal|last1=Wotherspoon|first1=T.|last2=et.|first2=al.|title=Adaptation to the edge of chaos with random-wavelet feedback|journal=J. Phys. Chem. A|date=2009|doi=10.1021/jp804420g|bibcode=2009JPCA..113...19W|volume=113|issue=1|pages=19–22|pmid=19072712}}</ref>
| |
− | | |
− | Even though the idea of the edge of chaos is abstract and unintuitive, it has many applications in such fields as ecology, business management, psychology, political science, and other domains of the social science. Physicists have shown that adaptation to the edge of chaos occurs in almost all systems with feedback.
| |
− | | |
− | 尽管混沌边缘的概念十分抽象且不直观,但它确实在生态学、商业管理、心理学、政治科学、社会科学等领域具有诸多应用。物理学家发现几乎所有具有反馈的系统都会适应混沌边缘。
| |
− | | |
− | | |
| | | |
| == History 历史== | | == History 历史== |