Inductive logic programming (ILP) is an approach to rule-learning using [[logic programming]] as a uniform representation for input examples, background knowledge, and hypotheses. Given an encoding of the known background knowledge and a set of examples represented as a logical database of facts, an ILP system will derive a hypothesized logic program that [[Entailment|entails]] all positive and no negative examples. [[Inductive programming]] is a related field that considers any kind of programming languages for representing hypotheses (and not only logic programming), such as [[Functional programming|functional programs]]. | Inductive logic programming (ILP) is an approach to rule-learning using [[logic programming]] as a uniform representation for input examples, background knowledge, and hypotheses. Given an encoding of the known background knowledge and a set of examples represented as a logical database of facts, an ILP system will derive a hypothesized logic program that [[Entailment|entails]] all positive and no negative examples. [[Inductive programming]] is a related field that considers any kind of programming languages for representing hypotheses (and not only logic programming), such as [[Functional programming|functional programs]]. |