更改

跳到导航 跳到搜索
第355行: 第355行:     
==== 无监督学习 Unsupervised learning ====
 
==== 无监督学习 Unsupervised learning ====
  −
{{Main|Unsupervised learning}}{{See also|Cluster analysis}}
      
Unsupervised learning algorithms take a set of data that contains only inputs, and find structure in the data, like grouping or clustering of data points. The algorithms, therefore, learn from test data that has not been labeled, classified or categorized. Instead of responding to feedback, unsupervised learning algorithms identify commonalities in the data and react based on the presence or absence of such commonalities in each new piece of data. A central application of unsupervised learning is in the field of [[density estimation]] in [[statistics]], such as finding the [[probability density function]].<ref name="JordanBishop2004">{{cite book |first1=Michael I. |last1=Jordan |first2=Christopher M. |last2=Bishop |chapter=Neural Networks |editor=Allen B. Tucker |title=Computer Science Handbook, Second Edition (Section VII: Intelligent Systems) |location=Boca Raton, Florida |publisher=Chapman & Hall/CRC Press LLC |year=2004 |isbn=978-1-58488-360-9 }}</ref> Though unsupervised learning encompasses other domains involving summarizing and explaining data features.
 
Unsupervised learning algorithms take a set of data that contains only inputs, and find structure in the data, like grouping or clustering of data points. The algorithms, therefore, learn from test data that has not been labeled, classified or categorized. Instead of responding to feedback, unsupervised learning algorithms identify commonalities in the data and react based on the presence or absence of such commonalities in each new piece of data. A central application of unsupervised learning is in the field of [[density estimation]] in [[statistics]], such as finding the [[probability density function]].<ref name="JordanBishop2004">{{cite book |first1=Michael I. |last1=Jordan |first2=Christopher M. |last2=Bishop |chapter=Neural Networks |editor=Allen B. Tucker |title=Computer Science Handbook, Second Edition (Section VII: Intelligent Systems) |location=Boca Raton, Florida |publisher=Chapman & Hall/CRC Press LLC |year=2004 |isbn=978-1-58488-360-9 }}</ref> Though unsupervised learning encompasses other domains involving summarizing and explaining data features.
第363行: 第361行:     
'''无监督学习 Unsupervised Learning'''算法只需要一组只包含输入的数据,通过寻找数据中潜在结构、规律,对数据点进行分组或聚类。因此,算法是从未被标记、分类或分类的测试数据中学习,而不是通过响应反馈来改进策略。无监督式学习算法可以识别数据中的共性,并根据每个新数据中是否存在这些共性而做出反应。无监督学习的一个核心应用是统计学中的密度估计领域,比如寻找概率密度函数。尽管非监督式学习也包含了其他领域,如总结和解释数据特性。
 
'''无监督学习 Unsupervised Learning'''算法只需要一组只包含输入的数据,通过寻找数据中潜在结构、规律,对数据点进行分组或聚类。因此,算法是从未被标记、分类或分类的测试数据中学习,而不是通过响应反馈来改进策略。无监督式学习算法可以识别数据中的共性,并根据每个新数据中是否存在这些共性而做出反应。无监督学习的一个核心应用是统计学中的密度估计领域,比如寻找概率密度函数。尽管非监督式学习也包含了其他领域,如总结和解释数据特性。
      
=====聚类=====
 
=====聚类=====
463

个编辑

导航菜单