更改
跳到导航
跳到搜索
←上一编辑
下一编辑→
非线性系统
(查看源代码)
2020年7月23日 (四) 20:23的版本
添加16字节
、
2020年7月23日 (四) 20:23
无编辑摘要
第6行:
第6行:
换句话说,在非线性方程系统中,待解的方程不能被写成未知变量或函数的线性组合。无论方程中是否有已知的线性函数,系统都可以被定义为非线性。特别是当一个微分方程的未知函数及其导数是线性的,即使其他变量是非线性的,也称该方程是线性的。
换句话说,在非线性方程系统中,待解的方程不能被写成未知变量或函数的线性组合。无论方程中是否有已知的线性函数,系统都可以被定义为非线性。特别是当一个微分方程的未知函数及其导数是线性的,即使其他变量是非线性的,也称该方程是线性的。
−
由于非线性动力学方程难以求解,通常用线性方程来近似非线性系统('''线性化 Linearization''')。这种方法对于一定范围的输入和某些精度要求下的效果不错,但一些有趣的现象如'''孤子 Soliton'''、'''混沌 Chaos'''和'''奇异性 Singularity'''在线性化后被隐藏<ref>[http://ocw.mit.edu/OcwWeb/Earth--Atmospheric--and-Planetary-Sciences/12-006JFall-2006/CourseHome/index.htm Nonlinear Dynamics I: Chaos] at [http://ocw.mit.edu/OcwWeb/index.htm MIT's OpenCourseWare]</ref>。因此,非线性系统的动态行为在某些方面可能看起来违反直觉、不可预测、甚至混沌。尽管这种混沌行为可能感觉很像随机行为,但它实际上并不是随机的。例如,天气的某些方面被认为是混沌的,其系统某部分的微小扰动就会产生复杂的整体影响。这种非线性是目前技术无法进行精确长期预测的原因之一。
+
由于非线性动力学方程难以求解,通常用线性方程来近似非线性系统('''
[[
线性化
]]
Linearization''')。这种方法对于一定范围的输入和某些精度要求下的效果不错,但一些有趣的现象如'''
[[
孤子
]]
Soliton'''、'''
[[
混沌
]]
Chaos'''和'''
[[
奇异性
]]
Singularity'''在线性化后被隐藏<ref>[http://ocw.mit.edu/OcwWeb/Earth--Atmospheric--and-Planetary-Sciences/12-006JFall-2006/CourseHome/index.htm Nonlinear Dynamics I: Chaos] at [http://ocw.mit.edu/OcwWeb/index.htm MIT's OpenCourseWare]</ref>。因此,非线性系统的动态行为在某些方面可能看起来违反直觉、不可预测、甚至混沌。尽管这种混沌行为可能感觉很像随机行为,但它实际上并不是随机的。例如,天气的某些方面被认为是混沌的,其系统某部分的微小扰动就会产生复杂的整体影响。这种非线性是目前技术无法进行精确长期预测的原因之一。
有些作者用非线性科学这一术语来研究非线性系统。这一术语引起了其他人的争议:
有些作者用非线性科学这一术语来研究非线性系统。这一术语引起了其他人的争议:
打豆豆
421
个编辑
导航菜单
个人工具
登录
名字空间
页面
讨论
变种
视图
阅读
查看源代码
查看历史
更多
搜索
导航
集智百科
集智主页
集智斑图
集智学园
最近更改
所有页面
帮助
工具
特殊页面
可打印版本