更改

跳到导航 跳到搜索
删除19字节 、 2020年7月26日 (日) 19:52
第55行: 第55行:  
==非线性微分方程==
 
==非线性微分方程==
   −
若一个微分方程组不是线性系统,则称其为非线性的。涉及[[非线性微分方程]]的问题非常多样,对不同问题的解决或分析方法也不相同。非线性微分方程的例子有流体力学中的 '''纳维-斯托克斯方程 Navier-Stokes Equations'''和生物学中的'''洛特卡-沃尔泰拉方程 Lotka-Volterra Equations'''。
+
若一个微分方程组不是线性系统,则称其为非线性的。涉及[[非线性微分方程]]的问题非常多样,对不同问题的解决或分析方法也不相同。非线性微分方程的例子有流体力学中的纳维-斯托克斯方程 Navier-Stokes Equations和生物学中的洛特卡-沃尔泰拉方程 Lotka-Volterra Equations。
    
非线性问题最大的困难之一是通常不可能将已知的解组合成新的解。例如,在线性问题中,可以根据叠加原理以一族线性独立的解构造通解。一个很好的例子是带有'''狄利克雷边界条件 Dirichlet Boundary Conditions'''的一维热传导问题,其解可以写成(随时间变化)不同频率的正弦波的线性组合,这使得解非常灵活。而对非线性方程,通常可以找到几个非常特殊的解,但是此时叠加原理不适用,故无法构造新的解。
 
非线性问题最大的困难之一是通常不可能将已知的解组合成新的解。例如,在线性问题中,可以根据叠加原理以一族线性独立的解构造通解。一个很好的例子是带有'''狄利克雷边界条件 Dirichlet Boundary Conditions'''的一维热传导问题,其解可以写成(随时间变化)不同频率的正弦波的线性组合,这使得解非常灵活。而对非线性方程,通常可以找到几个非常特殊的解,但是此时叠加原理不适用,故无法构造新的解。
第69行: 第69行:  
:<math>\frac{du}{d x} + u^2=0</math>
 
:<math>\frac{du}{d x} + u^2=0</math>
   −
方程的左边不是 ''u'' 及其导数的线性函数。注意,若将 ''u''<sup>2</sup> 项替换为''u'',该问题将变为线性的('''指数衰减 Exponential Decay'''问题)。
+
方程的左边不是 ''u'' 及其导数的线性函数。注意,若将 ''u''<sup>2</sup> 项替换为''u'',该问题将变为线性的(指数衰减 Exponential Decay问题)。
    
二阶和高阶常微分方程(更一般地说,非线性方程组)很少能产生封闭解,而隐式解和非初等函数积分形式的解较为常见。
 
二阶和高阶常微分方程(更一般地说,非线性方程组)很少能产生封闭解,而隐式解和非初等函数积分形式的解较为常见。
421

个编辑

导航菜单