更改

跳到导航 跳到搜索
删除1,467字节 、 2020年7月31日 (五) 11:48
第39行: 第39行:  
'''社会网络分析 Social Network Analysis'''独立于社会系统计算模型的发展,在20世纪70年代和80年代出现于[[图论]]、统计学和社会结构的研究中,它作为一种独特的分析方法被社会学家如 James s. Coleman,Harrison White,Linton Freeman,J. Clyde Mitchell,Mark Granovetter,Ronald Burt 和 Barry Wellman 等阐述和采用。<ref>{{cite book|title=The Development of Social Network Analysis: A Study in the Sociology of Science |first=Linton C. |last=Freeman |publisher=Empirical Press |location=Vancouver, BC |year=2004}}</ref> 在整个1980年代和1990年代,计算和通信技术日益普及,这要求采用诸如网络分析和多级建模等分析技术,这些技术可以扩展到日益复杂和庞大的数据集中。最近的计算社会学没有使用模拟,而是使用网络分析和先进的统计技术来分析大规模电子服务器构成的计算机数据库中的行为数据。<ref>{{cite journal|title=Life in the network: the coming age of computational social science|first9=J|last10=Gutmann|first10=M.|last11=Jebara|first11=T.|last12=King|first12=G.|last13=Macy|first13=M.|last14=Roy|first14=D.|last15=Van Alstyne|first15=M.|last9=Fowler|first8=N|last8=Contractor|first7=N|last7=Christakis|first6=D|last6=Brewer|first5=AL|last5=Barabasi|first4=S |journal=Science|last4=Aral |date=February 6, 2009|first3=L |volume=323|pmid=19197046 |issue=5915|last3=Adamic |pages=721–723|pmc=2745217 |doi=10.1126/science.1167742 |first1=David |last1=Lazer |first2=Alex |last2=Pentland |display-authors=8}}</ref> 电子记录,如电子邮件和即时消息记录,[[万维网]]上的超链接,移动电话数据,以及 Usenet 上的讨论,使社会科学家能够直接观察社会行为并在多个时间点和多个层次的分析行为,并且不受传统的实证方法,如访谈、观察或调查工具的限制。机器学习算法的不断改进同样使得社会科学家和企业家能够使用新技术来识别大型电子数据集中潜在但有意义的社会互动和演化模式。<ref>{{cite journal|first1=Jaideep |last1=Srivastava |first2=Robert |last2=Cooley |first3=Mukund |last3=Deshpande |first4=Pang-Ning |last4=Tan |journal=Proceedings of the ACM Conference on Knowledge Discovery and Data Mining |title=Web usage mining: discovery and applications of usage patterns from Web data|volume=1 |year=2000 |pages=12–23 |doi=10.1145/846183.846188|issue=2}}</ref><ref>{{cite journal|doi=10.1016/S0169-7552(98)00110-X|title=The anatomy of a large-scale hypertextual Web search engine |first1=Sergey |last1=Brin |first2=Lawrence |last2=Page |journal=Computer Networks and ISDN Systems |volume=30 |issue=1–7 |pages=107–117 |date=April 1998|citeseerx=10.1.1.115.5930 }}</ref>
 
'''社会网络分析 Social Network Analysis'''独立于社会系统计算模型的发展,在20世纪70年代和80年代出现于[[图论]]、统计学和社会结构的研究中,它作为一种独特的分析方法被社会学家如 James s. Coleman,Harrison White,Linton Freeman,J. Clyde Mitchell,Mark Granovetter,Ronald Burt 和 Barry Wellman 等阐述和采用。<ref>{{cite book|title=The Development of Social Network Analysis: A Study in the Sociology of Science |first=Linton C. |last=Freeman |publisher=Empirical Press |location=Vancouver, BC |year=2004}}</ref> 在整个1980年代和1990年代,计算和通信技术日益普及,这要求采用诸如网络分析和多级建模等分析技术,这些技术可以扩展到日益复杂和庞大的数据集中。最近的计算社会学没有使用模拟,而是使用网络分析和先进的统计技术来分析大规模电子服务器构成的计算机数据库中的行为数据。<ref>{{cite journal|title=Life in the network: the coming age of computational social science|first9=J|last10=Gutmann|first10=M.|last11=Jebara|first11=T.|last12=King|first12=G.|last13=Macy|first13=M.|last14=Roy|first14=D.|last15=Van Alstyne|first15=M.|last9=Fowler|first8=N|last8=Contractor|first7=N|last7=Christakis|first6=D|last6=Brewer|first5=AL|last5=Barabasi|first4=S |journal=Science|last4=Aral |date=February 6, 2009|first3=L |volume=323|pmid=19197046 |issue=5915|last3=Adamic |pages=721–723|pmc=2745217 |doi=10.1126/science.1167742 |first1=David |last1=Lazer |first2=Alex |last2=Pentland |display-authors=8}}</ref> 电子记录,如电子邮件和即时消息记录,[[万维网]]上的超链接,移动电话数据,以及 Usenet 上的讨论,使社会科学家能够直接观察社会行为并在多个时间点和多个层次的分析行为,并且不受传统的实证方法,如访谈、观察或调查工具的限制。机器学习算法的不断改进同样使得社会科学家和企业家能够使用新技术来识别大型电子数据集中潜在但有意义的社会互动和演化模式。<ref>{{cite journal|first1=Jaideep |last1=Srivastava |first2=Robert |last2=Cooley |first3=Mukund |last3=Deshpande |first4=Pang-Ning |last4=Tan |journal=Proceedings of the ACM Conference on Knowledge Discovery and Data Mining |title=Web usage mining: discovery and applications of usage patterns from Web data|volume=1 |year=2000 |pages=12–23 |doi=10.1145/846183.846188|issue=2}}</ref><ref>{{cite journal|doi=10.1016/S0169-7552(98)00110-X|title=The anatomy of a large-scale hypertextual Web search engine |first1=Sergey |last1=Brin |first2=Lawrence |last2=Page |journal=Computer Networks and ISDN Systems |volume=30 |issue=1–7 |pages=107–117 |date=April 1998|citeseerx=10.1.1.115.5930 }}</ref>
    +
[[File:Tripletsnew2012.png|thumb|right| 2012年美国大选叙事网络<ref name="ReferenceA">{{cite journal|title=Automated analysis of the US presidential elections using Big Data and network analysis|author1=S Sudhahar|author2=GA Veltri|author3=N Cristianini|journal=Big Data & Society|volume=2|issue=1|pages=1–28|year=2015|doi=10.1177/2053951715572916|doi-access=free}}</ref>]]
   −
 
+
文本语料库的自动解析使对参与者及其关系网络的大规模提取成为可能,它将文本数据转换为网络数据。由此产生的网络可以包含数千个'''节点 Nodes''',然后利用网络理论中的工具对其进行分析,以确定关键参与者、关键群体,以及网络的总体特性如稳健性、结构稳定性,或某些节点的'''中心性 Centrality'''等。<ref>{{cite journal|title=Network analysis of narrative content in large corpora|author1=S Sudhahar|author2=G De Fazio|author3=R Franzosi|author4=N Cristianini|journal=Natural Language Engineering|volume=21|issue=1|pages=1–32|year=2013|doi=10.1017/S1351324913000247 |url=https://research-information.bristol.ac.uk/files/129621186/Network_Analysis_of_Narrative_Content_in_Large_Corpora.pdf}}</ref> 这使'''定量叙事分析Quantitative Narrative Analysis'''引入的方法得以自动化,<ref>{{cite book|title=Quantitative Narrative Analysis|last=Franzosi|first=Roberto|publisher=Emory University|year=2010}}</ref>据此,主语-动词-宾语三元组被看作由动作连接的成对行为者,或者由行为者-宾语形成的成对行为者。<ref name="ReferenceA"/>
 
  −
[[File:Tripletsnew2012.png|thumb|right|Narrative network of US Elections 2012<ref name="ReferenceA">{{cite journal|title=Automated analysis of the US presidential elections using Big Data and network analysis|author1=S Sudhahar|author2=GA Veltri|author3=N Cristianini|journal=Big Data & Society|volume=2|issue=1|pages=1–28|year=2015|doi=10.1177/2053951715572916|doi-access=free}}</ref>]]
  −
 
  −
Narrative network of US Elections 2012
  −
 
  −
【图2:Narrative network of US Elections 2012 + 2012年美国大选叙事网络】
  −
 
  −
The automatic parsing of textual corpora has enabled the extraction of actors and their relational networks on a vast scale, turning textual data into network data.  The resulting networks, which can contain thousands of nodes, are then analysed by using tools from Network theory to identify the key actors, the key communities or parties, and general properties such as robustness or structural stability of the overall network, or centrality of certain nodes.<ref>{{cite journal|title=Network analysis of narrative content in large corpora|author1=S Sudhahar|author2=G De Fazio|author3=R Franzosi|author4=N Cristianini|journal=Natural Language Engineering|volume=21|issue=1|pages=1–32|year=2013|doi=10.1017/S1351324913000247 |url=https://research-information.bristol.ac.uk/files/129621186/Network_Analysis_of_Narrative_Content_in_Large_Corpora.pdf}}</ref> This automates the approach introduced by quantitative narrative analysis,<ref>{{cite book|title=Quantitative Narrative Analysis|last=Franzosi|first=Roberto|publisher=Emory University|year=2010}}</ref> whereby subject-verb-object triplets are identified with pairs of actors linked by an action, or pairs formed by actor-object.<ref name="ReferenceA"/>
  −
 
  −
The automatic parsing of textual corpora has enabled the extraction of actors and their relational networks on a vast scale, turning textual data into network data.  The resulting networks, which can contain thousands of nodes, are then analysed by using tools from Network theory to identify the key actors, the key communities or parties, and general properties such as robustness or structural stability of the overall network, or centrality of certain nodes. This automates the approach introduced by quantitative narrative analysis, whereby subject-verb-object triplets are identified with pairs of actors linked by an action, or pairs formed by actor-object.
  −
 
  −
文本语料库的自动解析使对参与者及其关系网络的大规模提取成为可能,它将文本数据转换为网络数据。由此产生的网络可以包含数千个'''节点 Nodes''',然后利用网络理论中的工具对其进行分析,以确定关键参与者、关键群体,以及网络的总体特性如稳健性、结构稳定性,或某些节点的'''中心性 Centrality'''等。这使'''定量叙事分析Quantitative Narrative Analysis'''引入的方法得以自动化,据此,主语-动词-宾语三元组被看作由动作连接的成对行为者,或者由行为者-宾语形成的成对行为者。
      
===计算内容分析 ===
 
===计算内容分析 ===
763

个编辑

导航菜单