更改

跳到导航 跳到搜索
添加65字节 、 2020年7月31日 (五) 22:32
第107行: 第107行:  
Philip Lieberman argues that since band societies of approximately 30–50 people are bounded by nutritional limitations to what group sizes can be fed without at least rudimentary agriculture, big human brains consuming more nutrients than ape brains, group sizes of approximately 150 cannot have been selected for in paleolithic humans.  Brains much smaller than human or even mammalian brains are also known to be able to support social relationships, including social insects with hierarchies where each individual "knows" its place (such as the paper wasp with its societies of approximately 80 individuals ) and computer-simulated virtual autonomous agents with simple reaction programming emulating what is referred to in primatology as "ape politics".
 
Philip Lieberman argues that since band societies of approximately 30–50 people are bounded by nutritional limitations to what group sizes can be fed without at least rudimentary agriculture, big human brains consuming more nutrients than ape brains, group sizes of approximately 150 cannot have been selected for in paleolithic humans.  Brains much smaller than human or even mammalian brains are also known to be able to support social relationships, including social insects with hierarchies where each individual "knows" its place (such as the paper wasp with its societies of approximately 80 individuals ) and computer-simulated virtual autonomous agents with simple reaction programming emulating what is referred to in primatology as "ape politics".
   −
菲利普•利伯曼(Philip Lieberman)认为,由于大约30至50人的群体社会受到营养限制,即使没有最基本的农业,群体规模也不能满足要求,大型人类大脑比猿类大脑消耗更多的营养,因此,大约150人的群体规模在旧石器时代的人类中是不可能被选中的。比人类甚至是哺乳动物大脑小得多的大脑也被认为能够支持社会关系,包括具有等级制度的社会昆虫,在这种制度下,每个个体都“知道”自己的位置(例如纸黄蜂和大约80个个体组成的社会) ,以及计算机模拟的虚拟自治代理程序,它们具有简单的反应编程,仿效灵长类学中所称的“猿政治”。
+
菲利普·利伯曼Philip Lieberman辩称,在没有最基本农业的情况下,社会群体会因为营养供给极限而导致规模上受到一定制约,大约在30至50人。人类的大脑相比较猿类会消耗更多的营养,因此,大约150人的群体规模在旧石器时代的人类范围内是不可能达到的。比人类甚至哺乳动物都要小得多的大脑也被认为能够支持社会关系,包括具有等级制度的社交昆虫,每个人都“知道”它的位置(例如大约由80只个体组成的黄蜂)以及计算机模拟的虚拟自治代理程序,它们具有简单的反应程序来仿效灵长类学中所称的“猿政治”。
 
  −
 
      
Comparisons of primate species show that what appears to be a link between group size and brain size, and also what species do not fit such a correlation, is explainable by diet. Many primates that eat specialized diets that rely on scarce food have evolved small brains to conserve nutrients and are limited to living in small groups or even alone, and they lower average brain size for solitary or small group primates. Small-brained species of primate that are living in large groups are successfully predicted by diet theory to be the species that eat food that is abundant but not very nutritious. Along with the existence of complex deception in small-brained primates in large groups with the opportunity (both abundant food eaters in their natural environments and originally solitary species that adopted social lifestyles under artificial food abundances), this is cited as evidence against the model of social groups selecting for large brains and/or intelligence.<ref>Alex R. DeCasien, Scott A. Williams & James P. Higham (2017). "Primate brain size is predicted by diet but not sociality"</ref>
 
Comparisons of primate species show that what appears to be a link between group size and brain size, and also what species do not fit such a correlation, is explainable by diet. Many primates that eat specialized diets that rely on scarce food have evolved small brains to conserve nutrients and are limited to living in small groups or even alone, and they lower average brain size for solitary or small group primates. Small-brained species of primate that are living in large groups are successfully predicted by diet theory to be the species that eat food that is abundant but not very nutritious. Along with the existence of complex deception in small-brained primates in large groups with the opportunity (both abundant food eaters in their natural environments and originally solitary species that adopted social lifestyles under artificial food abundances), this is cited as evidence against the model of social groups selecting for large brains and/or intelligence.<ref>Alex R. DeCasien, Scott A. Williams & James P. Higham (2017). "Primate brain size is predicted by diet but not sociality"</ref>
第115行: 第113行:  
Comparisons of primate species show that what appears to be a link between group size and brain size, and also what species do not fit such a correlation, is explainable by diet. Many primates that eat specialized diets that rely on scarce food have evolved small brains to conserve nutrients and are limited to living in small groups or even alone, and they lower average brain size for solitary or small group primates. Small-brained species of primate that are living in large groups are successfully predicted by diet theory to be the species that eat food that is abundant but not very nutritious. Along with the existence of complex deception in small-brained primates in large groups with the opportunity (both abundant food eaters in their natural environments and originally solitary species that adopted social lifestyles under artificial food abundances), this is cited as evidence against the model of social groups selecting for large brains and/or intelligence.
 
Comparisons of primate species show that what appears to be a link between group size and brain size, and also what species do not fit such a correlation, is explainable by diet. Many primates that eat specialized diets that rely on scarce food have evolved small brains to conserve nutrients and are limited to living in small groups or even alone, and they lower average brain size for solitary or small group primates. Small-brained species of primate that are living in large groups are successfully predicted by diet theory to be the species that eat food that is abundant but not very nutritious. Along with the existence of complex deception in small-brained primates in large groups with the opportunity (both abundant food eaters in their natural environments and originally solitary species that adopted social lifestyles under artificial food abundances), this is cited as evidence against the model of social groups selecting for large brains and/or intelligence.
   −
对灵长类物种的比较表明,群体大小和大脑大小之间的联系,以及哪些物种不符合这种联系,可以通过饮食来解释。许多以稀缺食物为食的灵长类动物进化出了小脑来保存营养,它们只能以小群体甚至单独生活,而且它们的平均大脑尺寸比独居或小群体灵长类动物要小。根据饮食理论,生活在大群体中的脑容量较小的灵长类动物被成功地预测为食物丰富但营养不足的物种。伴随着大群体中小脑灵长类动物复杂的欺骗行为的存在(自然环境中食物丰富,原始的独居物种在人工食物丰富的情况下采取社会生活方式) ,这被认为是反对社会群体选择大脑和/或智力模型的证据。
+
从对灵长类物种的比较中发现,饮食似乎可以解释群体规模和大脑体积之间的联系,以及哪些物种不符合这种相关性。许多依赖稀缺食物的灵长类动物已经进化出小脑来保存营养,它们只能生存在小群体当中甚至独居,而且它们平均大脑体积因为小群体或独居生活逐渐变小。该饮食理论还成功预测了生活在大群体中的脑容量较小的灵长类动物,其实是吃的很丰富但营养不足。在大规模群体中,小脑灵长类动物会随机出现复杂的欺骗行为(既包括自然环境中的拥有丰富资源的觅食者,又有在人工食物丰富的情况下采用了社会生活方式的原始独居者),对于社会群体选择进化更大的脑和/或更高智商的典型推论,该现象提供了有力的反驳证据。
 
  −
 
      
===Popularisation===
 
===Popularisation===
961

个编辑

导航菜单