Roughly speaking, dissipativity theory is useful for the design of feedback control laws for linear and nonlinear systems. Dissipative systems theory has been discussed by V.M. Popov, J.C. Willems, D.J. Hill, and P. Moylan. In the case of linear invariant systems模板:Clarify, this is known as positive real transfer functions, and a fundamental tool is the so-called Kalman–Yakubovich–Popov lemma which relates the state space and the frequency domain properties of positive real systems模板:Clarify.[10] Dissipative systems are still an active field of research in systems and control, due to their important applications. | Roughly speaking, dissipativity theory is useful for the design of feedback control laws for linear and nonlinear systems. Dissipative systems theory has been discussed by V.M. Popov, J.C. Willems, D.J. Hill, and P. Moylan. In the case of linear invariant systems模板:Clarify, this is known as positive real transfer functions, and a fundamental tool is the so-called Kalman–Yakubovich–Popov lemma which relates the state space and the frequency domain properties of positive real systems模板:Clarify.[10] Dissipative systems are still an active field of research in systems and control, due to their important applications. |