− | 由于量子力学,以及所有经典的动力系统都严重依赖于时间可逆的'''哈密顿力学 Hamiltonian mechanics''',因此这些近似在本质上不能描述耗散系统。有人提出,原则上,人们可以将系统(例如,一个振荡器)弱耦合到'''浴 bath'''中,也就是说,针对一组在热力学平衡态下,具备较宽的频谱的多个谐振子的集合,并对它们在所有的热浴中取迹(平均).这就产生了一个主方程,这是一个较为普遍的情况下的特例,被称为'''林德布莱德方程 Lindblad equation''',它是经典'''刘维尔方程 Liouville equation'''的量子等价物。众所周知,这个方程和它的量子对应物把时间作为一个可逆变量来积分,但耗散结构的基础认为时间具有不可逆且建设性的作用。 | + | 由于量子力学,以及所有经典的动力系统都严重依赖于时间可逆的'''哈密顿力学 Hamiltonian mechanics''',因此这些近似在本质上不能描述耗散系统。有人提出,原则上,人们可以将系统(例如,一个谐振子)弱耦合到'''热浴 bath'''中,也就是说,针对一组在热力学平衡态下,具备较宽的频谱的多个谐振子的集合,并对它们在所有的热浴中取迹(平均).这就产生了一个主方程,这是一个较为普遍的情况下的特例,被称为'''林德布莱德方程 Lindblad equation''',它是经典'''刘维尔方程 Liouville equation'''的量子等价物。众所周知,这个方程和它的量子对应物把时间作为一个可逆变量来积分,但耗散结构的基础认为时间具有不可逆且建设性的作用。 |