更改

跳到导航 跳到搜索
添加65字节 、 2020年8月14日 (五) 09:14
第114行: 第114行:  
Let X be a metric space. If S ⊂ X and d ∈ [0, ∞), the d-dimensional unlimited Hausdorff content of S is defined by
 
Let X be a metric space. If S ⊂ X and d ∈ [0, ∞), the d-dimensional unlimited Hausdorff content of S is defined by
   −
x 是度量空间。若 s something x 和 d ∈[0,∞) ,则 s 的 d 维无限 豪斯多夫集定义为
+
''X''是度量空间。若''S'' ⊂ ''X'' ''d'' ∈ [0, ∞) ,则 ''S'' ''d''维无限 豪斯多夫集定义为
    
:<math>C_H^d(S):=\inf\Bigl\{\sum_i r_i^d:\text{ there is a cover of } S\text{ by balls with radii }r_i>0\Bigr\}.</math>
 
:<math>C_H^d(S):=\inf\Bigl\{\sum_i r_i^d:\text{ there is a cover of } S\text{ by balls with radii }r_i>0\Bigr\}.</math>
第120行: 第120行:  
<math>C_H^d(S):=\inf\Bigl\{\sum_i r_i^d:\text{ there is a cover of } S\text{ by balls with radii }r_i>0\Bigr\}.</math>
 
<math>C_H^d(S):=\inf\Bigl\{\sum_i r_i^d:\text{ there is a cover of } S\text{ by balls with radii }r_i>0\Bigr\}.</math>
   −
数学 c h ^ d (s) : inf Bigl sum i r i ^ d: text { there is a cover of } text { by balls with radii } r i 0 Bigr } . / math
+
数学<math>C_H^d(S):=\inf\Bigl\{\sum_i r_i^d:\text{ there is a cover of } S\text{ by balls with radii }r_i>0\Bigr\}.</math>
    
In other words, <math>C_H^d(S)</math> is the [[infimum]] of the set of numbers <math>\delta \geq 0</math> such that there is some (indexed) collection of [[ball (mathematics)|ball]]s <math>\{B(x_i,r_i):i\in I\}</math> covering ''S'' with ''r<sub>i</sub>''&nbsp;>&nbsp;0 for each ''i''&nbsp;∈&nbsp;''I'' that satisfies <math>\sum_{i\in I} r_i^d<\delta </math>. (Here, we use the standard convention that [[infimum|inf&nbsp;Ø&nbsp;=&nbsp;∞]].)
 
In other words, <math>C_H^d(S)</math> is the [[infimum]] of the set of numbers <math>\delta \geq 0</math> such that there is some (indexed) collection of [[ball (mathematics)|ball]]s <math>\{B(x_i,r_i):i\in I\}</math> covering ''S'' with ''r<sub>i</sub>''&nbsp;>&nbsp;0 for each ''i''&nbsp;∈&nbsp;''I'' that satisfies <math>\sum_{i\in I} r_i^d<\delta </math>. (Here, we use the standard convention that [[infimum|inf&nbsp;Ø&nbsp;=&nbsp;∞]].)
第126行: 第126行:  
In other words, <math>C_H^d(S)</math> is the infimum of the set of numbers <math>\delta \geq 0</math> such that there is some (indexed) collection of balls <math>\{B(x_i,r_i):i\in I\}</math> covering S with r<sub>i</sub>&nbsp;>&nbsp;0 for each i&nbsp;∈&nbsp;I that satisfies <math>\sum_{i\in I} r_i^d<\delta </math>. (Here, we use the standard convention that inf&nbsp;Ø&nbsp;=&nbsp;∞.)
 
In other words, <math>C_H^d(S)</math> is the infimum of the set of numbers <math>\delta \geq 0</math> such that there is some (indexed) collection of balls <math>\{B(x_i,r_i):i\in I\}</math> covering S with r<sub>i</sub>&nbsp;>&nbsp;0 for each i&nbsp;∈&nbsp;I that satisfies <math>\sum_{i\in I} r_i^d<\delta </math>. (Here, we use the standard convention that inf&nbsp;Ø&nbsp;=&nbsp;∞.)
   −
换句话说,math c h ^ d (s) / math 是数字集合 math delta geq 0 / math 的下确界,使得在 i / math 中存在一些球集合 math { b (xi,ri) : i 包含 s,对于每个 i ∈ i,r 子 i / sub 0满足 i 中的数学和 i ^ d delta / math。(在这里,我们使用 inf .)的标准约定
+
换句话说, <math>C_H^d(S)</math> 是数字集合 <math>\delta \geq 0</math> 的下确界,使得在 i / math 中存在一些球集合 <math>\{B(x_i,r_i):i\in I\}</math>  i 包含 s,对于每个 ''r<sub>i</sub>''&nbsp;>&nbsp;0 满足 i 中的和<math>\sum_{i\in I} r_i^d<\delta </math> (在这里,我们使用inf&nbsp;Ø&nbsp;=&nbsp;∞ )的标准约定。
    
===Hausdorff measurement豪斯多夫分形测量===
 
===Hausdorff measurement豪斯多夫分形测量===
27

个编辑

导航菜单