更改

跳到导航 跳到搜索
删除2,437字节 、 2020年8月16日 (日) 13:21
第98行: 第98行:  
二分图可以用以下几种不同的方式来描述其特征:
 
二分图可以用以下几种不同的方式来描述其特征:
   −
* A graph is bipartite [[if and only if]] it does not contain an [[Cycle (graph theory)|odd cycle]].<ref>{{harvtxt|Asratian|Denley|Häggkvist|1998}}, Theorem 2.1.3, p. 8. Asratian et al. attribute this characterization to a 1916 paper by [[Dénes Kőnig]]. For infinite graphs, this result requires the [[axiom of choice]].
+
* A graph is bipartite [[if and only if]] it does not contain an [[Cycle (graph theory)|odd cycle]]. Theorem 2.1.3, p. 8. Asratian et al. attribute this characterization to a 1916 paper by [[Dénes Kőnig]]. For infinite graphs, this result requires the [[axiom of choice]].
 
* 当且仅当它不包含奇数环的时候,该图为二分图。
 
* 当且仅当它不包含奇数环的时候,该图为二分图。
   第160行: 第160行:       −
===Relation to hypergraphs and directed graphs===
+
=== Relation to hypergraphs and directed graphs 与超图和有向图的关系 ===
    
The [[Adjacency matrix of a bipartite graph|biadjacency matrix]] of a bipartite graph <math>(U,V,E)</math> is a [[(0,1) matrix]] of size <math>|U|\times|V|</math> that has a one for each pair of adjacent vertices and a zero for nonadjacent vertices.<ref>{{harvtxt|Asratian|Denley|Häggkvist|1998}}, p. 17.</ref> Biadjacency matrices may be used to describe equivalences between bipartite graphs, hypergraphs, and directed graphs.
 
The [[Adjacency matrix of a bipartite graph|biadjacency matrix]] of a bipartite graph <math>(U,V,E)</math> is a [[(0,1) matrix]] of size <math>|U|\times|V|</math> that has a one for each pair of adjacent vertices and a zero for nonadjacent vertices.<ref>{{harvtxt|Asratian|Denley|Häggkvist|1998}}, p. 17.</ref> Biadjacency matrices may be used to describe equivalences between bipartite graphs, hypergraphs, and directed graphs.
第166行: 第166行:  
The biadjacency matrix of a bipartite graph <math>(U,V,E)</math> is a (0,1) matrix of size <math>|U|\times|V|</math> that has a one for each pair of adjacent vertices and a zero for nonadjacent vertices. Biadjacency matrices may be used to describe equivalences between bipartite graphs, hypergraphs, and directed graphs.
 
The biadjacency matrix of a bipartite graph <math>(U,V,E)</math> is a (0,1) matrix of size <math>|U|\times|V|</math> that has a one for each pair of adjacent vertices and a zero for nonadjacent vertices. Biadjacency matrices may be used to describe equivalences between bipartite graphs, hypergraphs, and directed graphs.
   −
二部图的二邻接矩阵 < math > (u,v,e) </math > 是一个大小为 < math > | u | times | v | </math > 的(0,1)矩阵,每对相邻顶点有一个1,对不相邻顶点有一个0。双邻接矩阵可以用来描述二部图、超图和有向图之间的等价关系。
+
一个二分图(U,V,E)的双邻矩阵是大小为|V| 的(0,1)矩阵,其分别代表了每对相邻顶点集合和非相邻顶点的集合(全零矩阵)。双邻接矩阵可用于描述二分图,超图和定向图之间的等价关系。
      第174行: 第174行:  
A hypergraph is a combinatorial structure that, like an undirected graph, has vertices and edges, but in which the edges may be arbitrary sets of vertices rather than having to have exactly two endpoints. A bipartite graph <math>(U,V,E)</math> may be used to model a hypergraph in which  is the set of vertices of the hypergraph,  is the set of hyperedges, and  contains an edge from a hypergraph vertex  to a hypergraph edge  exactly when  is one of the endpoints of . Under this correspondence, the biadjacency matrices of bipartite graphs are exactly the incidence matrices of the corresponding hypergraphs. As a special case of this correspondence between bipartite graphs and hypergraphs, any multigraph (a graph in which there may be two or more edges between the same two vertices) may be interpreted as a hypergraph in which some hyperedges have equal sets of endpoints, and represented by a bipartite graph that does not have multiple adjacencies and in which the vertices on one side of the bipartition all have degree two.
 
A hypergraph is a combinatorial structure that, like an undirected graph, has vertices and edges, but in which the edges may be arbitrary sets of vertices rather than having to have exactly two endpoints. A bipartite graph <math>(U,V,E)</math> may be used to model a hypergraph in which  is the set of vertices of the hypergraph,  is the set of hyperedges, and  contains an edge from a hypergraph vertex  to a hypergraph edge  exactly when  is one of the endpoints of . Under this correspondence, the biadjacency matrices of bipartite graphs are exactly the incidence matrices of the corresponding hypergraphs. As a special case of this correspondence between bipartite graphs and hypergraphs, any multigraph (a graph in which there may be two or more edges between the same two vertices) may be interpreted as a hypergraph in which some hyperedges have equal sets of endpoints, and represented by a bipartite graph that does not have multiple adjacencies and in which the vertices on one side of the bipartition all have degree two.
   −
一个超图是一个组合结构,就像一个无向图,有顶点和边,但其中的边可能是任意的顶点集,而不是必须有正好两个端点。二部图 < math > (u,v,e) </math > 可以用来建模一个超图,其中超图的顶点集是超边的集合,它包含一条从超图顶点到超图边的边,而这条边恰好是超图的端点之一。在此对应关系下,二部图的二邻接矩阵正好是对应超图的关联矩阵。作为二部图和超图之间对应关系的一种特殊情形,任何多重图(在同一两个顶点之间可能有两条或更多条边的图)都可以被解释为一个超图,其中一些超边具有相等的端点集,并由一个不具有多重邻接的二部图表示,在这个超图中,二部分一边的顶点都具有二次。
+
超图是一种组合结构,类似于无向图,它具有顶点和连边,但是其中的边可以是任意子集组的顶点,而不必具有两个端点。可以使用二分图(U,V,E)来建模超图,其中U是超图的其中一个顶点集,V是该超图的连边集(称为超边集),E包含的连边定义为:从一个超图顶点v到超图连边e恰好当v是e的端点集之一时。在这种对应关系下,二分图的双邻矩阵正好是其相应超图的关联矩阵。作为二分图和超图之间这种对应关系的特例,任何多重图Multigraph(即在相同两点之间可能存在的多条边的图)都可以解释为其中一些超边具有相同端点集的超图,并且由不具有多个邻接关系的二分图表示,其中二分图的同边顶点的度均为2。
      第180行: 第180行:  
A similar reinterpretation of adjacency matrices may be used to show a one-to-one correspondence between [[directed graph]]s (on a given number of labeled vertices, allowing self-loops) and balanced bipartite graphs, with the same number of vertices on both sides of the bipartition. For, the adjacency matrix of a directed graph with {{mvar|n}} vertices can be any [[(0,1) matrix]] of size <math>n\times n</math>, which can then be reinterpreted as the adjacency matrix of a bipartite graph with {{mvar|n}} vertices on each side of its bipartition.<ref>{{citation
 
A similar reinterpretation of adjacency matrices may be used to show a one-to-one correspondence between [[directed graph]]s (on a given number of labeled vertices, allowing self-loops) and balanced bipartite graphs, with the same number of vertices on both sides of the bipartition. For, the adjacency matrix of a directed graph with {{mvar|n}} vertices can be any [[(0,1) matrix]] of size <math>n\times n</math>, which can then be reinterpreted as the adjacency matrix of a bipartite graph with {{mvar|n}} vertices on each side of its bipartition.<ref>{{citation
   −
A similar reinterpretation of adjacency matrices may be used to show a one-to-one correspondence between directed graphs (on a given number of labeled vertices, allowing self-loops) and balanced bipartite graphs, with the same number of vertices on both sides of the bipartition. For, the adjacency matrix of a directed graph with  vertices can be any (0,1) matrix of size <math>n\times n</math>, which can then be reinterpreted as the adjacency matrix of a bipartite graph with  vertices on each side of its bipartition.<ref>{{citation
+
A similar reinterpretation of adjacency matrices may be used to show a one-to-one correspondence between directed graphs (on a given number of labeled vertices, allowing self-loops) and balanced bipartite graphs, with the same number of vertices on both sides of the bipartition. For, the adjacency matrix of a directed graph with  vertices can be any (0,1) matrix of size <math>n\times n</math>, which can then be reinterpreted as the adjacency matrix of a bipartite graph with  vertices on each side of its bipartition.
   −
一个类似的邻接矩阵翻唱可以用来显示有向图(在给定数量的标号顶点上,允许自循环)和平衡二部图之间的双射,二部图的两边顶点数相同。因为,顶点有向图的邻接矩阵可以是任意大小的(0,1)矩阵 n 次 n 次 n 次 n 次 n 次 n 次 n 次 n 次 n 次 n 次 n 次 n 次 n 次 n 次 n 次 n 次 n 次 n 次 n 次 n 次 n 次 n 次 n 次 n 次 n 次 n 次 n 次 n 次 n 次 n 次 n 次 n 次 n 次 n 次 n 次 n 次 n 次 n 次 n 次 n 次 n 次 n 次 n 次 n 次 n 次 n 次 n 次 n 次 n 次 n 次 n 次 n 次 n 次 n 次 n 次 n 次 n。< ref > { citation
+
关于邻接矩阵的另一个相似解释可以被用于展示有向图和均衡二分图(二分子集顶点数相等)之间的一一对应关系(在给定数量的标记顶点上,允许自循环)。例如,具有n个顶点的有向图的邻接矩阵可以是大小为nxn的任何(0,1)矩阵,然后可以将其重新解释为:具有相同顶点数n的同边子集的二分图的邻接矩阵。通过这种构建方式,二分图可以被解释为是一个有向图的二分双重覆盖bipartite double cover。
 
  −
| last1 = Brualdi | first1 = Richard A.
  −
 
  −
| last1 = Brualdi | first1 = Richard A.
  −
 
  −
1 = Brualdi | first1 = Richard a.
  −
 
  −
| last2 = Harary | first2 = Frank | author2-link = Frank Harary
  −
 
  −
| last2 = Harary | first2 = Frank | author2-link = Frank Harary
  −
 
  −
2 = Harary | first2 = Frank | author2-link = Frank Harary
  −
 
  −
| last3 = Miller | first3 = Zevi
  −
 
  −
| last3 = Miller | first3 = Zevi
  −
 
  −
3 = Miller | first3 = Zevi
  −
 
  −
| doi = 10.1002/jgt.3190040107
  −
 
  −
| doi = 10.1002/jgt.3190040107
  −
 
  −
| doi = 10.1002/jgt. 3190040107
  −
 
  −
| mr = 558453
  −
 
  −
| mr = 558453
  −
 
  −
558453先生
  −
 
  −
| issue = 1
  −
 
  −
| issue = 1
  −
 
  −
1
  −
 
  −
| journal = Journal of Graph Theory
  −
 
  −
| journal = Journal of Graph Theory
  −
 
  −
| Journal = Journal of Graph Theory
  −
 
  −
| pages = 51–73
  −
 
  −
| pages = 51–73
  −
 
  −
| 页数 = 51-73
  −
 
  −
| title = Bigraphs versus digraphs via matrices
  −
 
  −
| title = Bigraphs versus digraphs via matrices
  −
 
  −
| title = Bigraphs vs 通过矩阵的有向图
  −
 
  −
| volume = 4
  −
 
  −
| volume = 4
  −
 
  −
4
  −
 
  −
| year = 1980}}. Brualdi et al. credit the idea for this equivalence to {{citation
  −
 
  −
| year = 1980}}. Brualdi et al. credit the idea for this equivalence to {{citation
  −
 
  −
1980}}.布鲁迪等人。把这个等价的概念归功于{ citation
  −
 
  −
| doi = 10.4153/CJM-1958-052-0
  −
 
  −
| doi = 10.4153/CJM-1958-052-0
  −
 
  −
| doi = 10.4153/CJM-1958-052-0
  −
 
  −
| last1 = Dulmage | first1 = A. L.
  −
 
  −
| last1 = Dulmage | first1 = A. L.
  −
 
  −
1 = Dulmage | first1 = A.l.
  −
 
  −
| last2 = Mendelsohn | first2 = N. S. | author2-link = Nathan Mendelsohn
  −
 
  −
| last2 = Mendelsohn | first2 = N. S. | author2-link = Nathan Mendelsohn
  −
 
  −
2 = Mendelsohn | first2 = n. s. | author2-link = Nathan Mendelsohn
  −
 
  −
| mr = 0097069
  −
 
  −
| mr = 0097069
  −
 
  −
0097069先生
  −
 
  −
| journal = Canadian Journal of Mathematics
  −
 
  −
| journal = Canadian Journal of Mathematics
  −
 
  −
加拿大数学杂志
  −
 
  −
| pages = 517–534
  −
 
  −
| pages = 517–534
  −
 
  −
| 页数 = 517-534
  −
 
  −
| title = Coverings of bipartite graphs
  −
 
  −
| title = Coverings of bipartite graphs
  −
 
  −
| title = 二部图的覆盖
  −
 
  −
| volume = 10
  −
 
  −
| volume = 10
  −
 
  −
10
  −
 
  −
| year = 1958}}.</ref> In this construction, the bipartite graph is the [[bipartite double cover]] of the directed graph.
  −
 
  −
| year = 1958}}.</ref> In this construction, the bipartite graph is the bipartite double cover of the directed graph.
  −
 
  −
| year = 1958}。 </ref > 在这个结构中,二部图是有向图的二部双覆盖。
      
==Algorithms==
 
==Algorithms==
961

个编辑

导航菜单