更改

跳到导航 跳到搜索
删除606字节 、 2020年8月16日 (日) 23:40
第1,434行: 第1,434行:  
Statistical mechanics gives an explanation for the second law by postulating that a material is composed of atoms and molecules which are in constant motion. A particular set of positions and velocities for each particle in the system is called a microstate of the system and because of the constant motion, the system is constantly changing its microstate. Statistical mechanics postulates that, in equilibrium, each microstate that the system might be in is equally likely to occur, and when this assumption is made, it leads directly to the conclusion that the second law must hold in a statistical sense. That is, the second law will hold on average, with a statistical variation on the order of 1/{{radic|''N''}} where N is the number of particles in the system. For everyday (macroscopic) situations, the probability that the second law will be violated is practically zero. However, for systems with a small number of particles, thermodynamic parameters, including the entropy, may show significant statistical deviations from that predicted by the second law. Classical thermodynamic theory does not deal with these statistical variations.
 
Statistical mechanics gives an explanation for the second law by postulating that a material is composed of atoms and molecules which are in constant motion. A particular set of positions and velocities for each particle in the system is called a microstate of the system and because of the constant motion, the system is constantly changing its microstate. Statistical mechanics postulates that, in equilibrium, each microstate that the system might be in is equally likely to occur, and when this assumption is made, it leads directly to the conclusion that the second law must hold in a statistical sense. That is, the second law will hold on average, with a statistical variation on the order of 1/{{radic|''N''}} where N is the number of particles in the system. For everyday (macroscopic) situations, the probability that the second law will be violated is practically zero. However, for systems with a small number of particles, thermodynamic parameters, including the entropy, may show significant statistical deviations from that predicted by the second law. Classical thermodynamic theory does not deal with these statistical variations.
   −
<font color = 'blue'>统计力学</font>通过假设物质是由不断运动的原子和分子组成的,<font color = 'blue'>来</font><font color = 'red'><s>统计力学</s></font>对第二定律给出了解释。系统中每个粒子的一组特定的位置和速度称为系统的微观状态,由于系统的不断运动,系统不断地改变其微观状态。统计力学假设,在平衡状态下,系统<font color = 'red'><s>可能</s></font>处于<s>的</s>每个微观状态<font color = 'red'><s>发生</s></font>的可能性是相等的<font color = 'red'><s>,当这个假设被提出时,它直接导致了第二定律必须在统计意义上成立的结论。</s></font><font color = 'blue'>这个假设的提出直接导致第二定律必须子啊统计学意义上成立</font>也就是说,第二定律<font color = 'red'><s>平均成立,其中 N 是系统中粒子数的1 / 数量级的统计变化。</s></font><font color = 'blue'>在平均意义上成立,其中统计学变异取决于数量级1/{{radic|''N''}},其中 N 是系统中粒子数</font>。在日常(宏观)情况下,违反第二定律的概率几乎为零。然而,对于粒子数量很少的系统,热力学参数,包括熵,可能显示出与第二定律预测<font color = 'red'><s>的</s></font><font color = 'blue'>结果的</font>显著的统计偏差。经典热力学理论<font color = 'red'><s>没有</s></font><font color = 'blue'>不</font>处理这些统计变量。
+
统计力学通过假设物质是由不断运动的原子和分子组成的,来对第二定律给出了解释。系统中每个粒子的一组特定的位置和速度称为系统的微观状态,由于系统的不断运动,系统不断地改变其微观状态。统计力学假设,在平衡状态下,系统处于<s>的</s>每个微观状态的可能性是相等的。这个假设的提出直接导致第二定律必须子啊统计学意义上成立</font>也就是说,第二定律在平均意义上成立,其中统计学变异取决于数量级1/{{radic|''N''}},其中 N 是系统中粒子数</font>。在日常(宏观)情况下,违反第二定律的概率几乎为零。然而,对于粒子数量很少的系统,热力学参数,包括熵,可能显示出与第二定律预测结果的显著的统计偏差。经典热力学理论不处理这些统计变量。
    
(by Jie XIANG) 在通过假定一种物质由不断运动的原子和分子组成的前提下,统计力学对热力学第二定律进行了解释。系统中每个粒子其特定的位置和速度组成为系统的微观状态,由于(原子和分子的)不断运动,系统也持续改变其微观状态。统计力学假设,在系统力平衡的情况下,其微观状态其实是等可能发生的,进而能够得出结论:热力学第二定律必须在统计学意义上成立。也就是说,第二定律将保持均值不变, 其统计变化为1 /√N,N为系统中的粒子数。在日常(宏观)情况下,违反热力学第二定律的概率几乎为零,但是,对于粒子数量非常少的系统,其热力学参数(包括熵)可能会显示出与第二定律所预测的明显统计偏差。然而经典热力学理论并不处理这些统计变量。
 
(by Jie XIANG) 在通过假定一种物质由不断运动的原子和分子组成的前提下,统计力学对热力学第二定律进行了解释。系统中每个粒子其特定的位置和速度组成为系统的微观状态,由于(原子和分子的)不断运动,系统也持续改变其微观状态。统计力学假设,在系统力平衡的情况下,其微观状态其实是等可能发生的,进而能够得出结论:热力学第二定律必须在统计学意义上成立。也就是说,第二定律将保持均值不变, 其统计变化为1 /√N,N为系统中的粒子数。在日常(宏观)情况下,违反热力学第二定律的概率几乎为零,但是,对于粒子数量非常少的系统,其热力学参数(包括熵)可能会显示出与第二定律所预测的明显统计偏差。然而经典热力学理论并不处理这些统计变量。
31

个编辑

导航菜单