更改

跳到导航 跳到搜索
删除29字节 、 2020年8月17日 (一) 13:10
第155行: 第155行:  
<math>\dim_{\operatorname{H}}(X):=\inf\{d\ge 0: \mathcal{H}^d(X)=0\}.</math>
 
<math>\dim_{\operatorname{H}}(X):=\inf\{d\ge 0: \mathcal{H}^d(X)=0\}.</math>
   −
Math  operatorname { h }(x) :  inf  ge 0:  mathcal { h } ^ d (x)0} . / math
        第163行: 第162行:  
Equivalently, dim<sub>H</sub>(X) may be defined as the infimum of the set of d ∈ [0, ∞) such that the d-dimensional Hausdorff measure of X is zero. This is the same as the supremum of the set of d&nbsp;∈&nbsp;[0,&nbsp;∞) such that the d-dimensional Hausdorff measure of X is infinite (except that when this latter set of numbers d is empty the Hausdorff dimension is zero).
 
Equivalently, dim<sub>H</sub>(X) may be defined as the infimum of the set of d ∈ [0, ∞) such that the d-dimensional Hausdorff measure of X is zero. This is the same as the supremum of the set of d&nbsp;∈&nbsp;[0,&nbsp;∞) such that the d-dimensional Hausdorff measure of X is infinite (except that when this latter set of numbers d is empty the Hausdorff dimension is zero).
   −
等价地,dim 子 h / sub (x)可定义为 d ∈[0,∞)集的下确界,使得 x 的 d 维 Hausdorff 测度为零。这与 d ∈[0,∞)的集合的上确界相同,因此 x 的 d 维豪斯多夫测度是无限的(除非后一个集合 d 是空的,豪斯多夫维数为零)。
+
等价地,dim <sub>H</sub>(''X'')可定义为 ''d'' ∈ [0, ∞) 集的下确界,使得''X'' ''d''-[[豪斯多夫测度]] 为零。这与 ''d''&nbsp;&nbsp;[0,&nbsp;∞)的集合的上确界相同,因此''X''的 d 维豪斯多夫测度是无限的(除非后一个集合 ''d'' 是空的,豪斯多夫维数为零)。
    
==Examples实例==
 
==Examples实例==
77

个编辑

导航菜单