第197行: |
第197行: |
| | | |
| | | |
− | === Hausdorff dimension and inductive dimension === | + | === Hausdorff dimension and inductive dimension 豪斯多夫维数和归纳维数=== |
| | | |
| Let ''X'' be an arbitrary [[Separable space|separable]] metric space. There is a [[topology|topological]] notion of [[inductive dimension]] for ''X'' which is defined recursively. It is always an integer (or +∞) and is denoted dim<sub>ind</sub>(''X''). | | Let ''X'' be an arbitrary [[Separable space|separable]] metric space. There is a [[topology|topological]] notion of [[inductive dimension]] for ''X'' which is defined recursively. It is always an integer (or +∞) and is denoted dim<sub>ind</sub>(''X''). |
第203行: |
第203行: |
| Let X be an arbitrary separable metric space. There is a topological notion of inductive dimension for X which is defined recursively. It is always an integer (or +∞) and is denoted dim<sub>ind</sub>(X). | | Let X be an arbitrary separable metric space. There is a topological notion of inductive dimension for X which is defined recursively. It is always an integer (or +∞) and is denoted dim<sub>ind</sub>(X). |
| | | |
− | 设 x 是任意可分度量空间。对于 x 有一个递归定义的归纳维数拓扑概念。它总是一个整数(或 + ∞) ,并且表示 dim sub ind / sub (x)。 | + | 设''X'' 是[[任意可分度量空间]]。对于''X'' 有一个递归定义的归纳维数拓扑概念。它总是一个整数(或 + ∞) ,并且表示dim<sub>ind</sub>(''X'')。 |
| | | |
| | | |
第211行: |
第211行: |
| Theorem. Suppose X is non-empty. Then | | Theorem. Suppose X is non-empty. Then |
| | | |
− | 定理:假设 x 是非空的。然后
| + | '''定理''':假设''X'' 是非空的。那么 |
| | | |
| :<math> \dim_{\mathrm{Haus}}(X) \geq \dim_{\operatorname{ind}}(X). </math> | | :<math> \dim_{\mathrm{Haus}}(X) \geq \dim_{\operatorname{ind}}(X). </math> |
第217行: |
第217行: |
| <math> \dim_{\mathrm{Haus}}(X) \geq \dim_{\operatorname{ind}}(X). </math> | | <math> \dim_{\mathrm{Haus}}(X) \geq \dim_{\operatorname{ind}}(X). </math> |
| | | |
− | <math> \dim_{\mathrm{Haus}}(X) \geq \dim_{\operatorname{ind}}(X).数学
| + | |
| | | |
| Moreover, | | Moreover, |
第225行: |
第225行: |
| 此外, | | 此外, |
| | | |
− | :<math> \inf_Y \dim_{\operatorname{Haus}}(Y) =\dim_{\operatorname{ind}}(X), </math>
| + | <math> \inf_Y \dim_{\operatorname{Haus}}(Y) =\dim_{\operatorname{ind}}(X), </math> |
| | | |
| <math> \inf_Y \dim_{\operatorname{Haus}}(Y) =\dim_{\operatorname{ind}}(X), </math> | | <math> \inf_Y \dim_{\operatorname{Haus}}(Y) =\dim_{\operatorname{ind}}(X), </math> |
| | | |
− | (y) dim { operatorname { Haus }(y) dim { operatorname { ind }(x) ,/ math
| + | |
| | | |
| where ''Y'' ranges over metric spaces [[homeomorphic]] to ''X''. In other words, ''X'' and ''Y'' have the same underlying set of points and the metric ''d''<sub>''Y''</sub> of ''Y'' is topologically equivalent to ''d''<sub>''X''</sub>. | | where ''Y'' ranges over metric spaces [[homeomorphic]] to ''X''. In other words, ''X'' and ''Y'' have the same underlying set of points and the metric ''d''<sub>''Y''</sub> of ''Y'' is topologically equivalent to ''d''<sub>''X''</sub>. |
第235行: |
第235行: |
| where Y ranges over metric spaces homeomorphic to X. In other words, X and Y have the same underlying set of points and the metric d<sub>Y</sub> of Y is topologically equivalent to d<sub>X</sub>. | | where Y ranges over metric spaces homeomorphic to X. In other words, X and Y have the same underlying set of points and the metric d<sub>Y</sub> of Y is topologically equivalent to d<sub>X</sub>. |
| | | |
− | 其中 y 是度量空间同胚到 x 的范围。换句话说,x 和 y 具有相同的基本点集,y 的度规 d 子 y / 子拓扑等价于 d 子 x / 子。 | + | 其中''Y''是度量空间同胚到 ''X''的范围。换句话说, ''X''和 ''Y''具有相同的基本点集,''Y''的度规''d''<sub>''Y''</sub> 的子拓扑等价于''d''<sub>''X''</sub>。 |
| | | |
| | | |
第243行: |
第243行: |
| These results were originally established by Edward Szpilrajn (1907–1976), e.g., see Hurewicz and Wallman, Chapter VII. | | These results were originally established by Edward Szpilrajn (1907–1976), e.g., see Hurewicz and Wallman, Chapter VII. |
| | | |
− | 这些结果最初是由 Edward Szpilrajn (1907-1976)建立的,例如,见 Hurewicz 和 Wallman,第七章。 | + | 这些结果最初是由 [[Edward Szpilrajn]] (1907–1976)建立的, 参见 Hurewicz and Wallman, Chapter VII.{{full citation needed|date=March 2015}}第七章。 |
− | | |
− | | |
| | | |
| === Hausdorff dimension and Minkowski dimension 豪斯多夫维数和闵可夫斯基维度=== | | === Hausdorff dimension and Minkowski dimension 豪斯多夫维数和闵可夫斯基维度=== |