Another class of related results concerns perfect graphs: every bipartite graph, the complement of every bipartite graph, the line graph of every bipartite graph, and the complement of the line graph of every bipartite graph, are all perfect. Perfection of bipartite graphs is easy to see (their chromatic number is two and their maximum clique size is also two) but perfection of the complements of bipartite graphs is less trivial, and is another restatement of Kőnig's theorem. This was one of the results that motivated the initial definition of perfect graphs. | Another class of related results concerns perfect graphs: every bipartite graph, the complement of every bipartite graph, the line graph of every bipartite graph, and the complement of the line graph of every bipartite graph, are all perfect. Perfection of bipartite graphs is easy to see (their chromatic number is two and their maximum clique size is also two) but perfection of the complements of bipartite graphs is less trivial, and is another restatement of Kőnig's theorem. This was one of the results that motivated the initial definition of perfect graphs. |