In the distributed memory model, the usual approach is to partition the vertex set <math>V</math> of the graph into <math>p</math> sets <math>V_0, \dots, V_{p-1}</math>. Here, <math>p</math> is the amount of available processing elements (PE). The vertex set partitions are then distributed to the PEs with matching index, additionally to the corresponding edges. Every PE has its own subgraph representation, where edges with an endpoint in another partition require special attention. For standard communication interfaces like MPI, the ID of the PE owning the other endpoint has to be identifiable. During computation in a distributed graph algorithms, passing information along these edges implies communication. | In the distributed memory model, the usual approach is to partition the vertex set <math>V</math> of the graph into <math>p</math> sets <math>V_0, \dots, V_{p-1}</math>. Here, <math>p</math> is the amount of available processing elements (PE). The vertex set partitions are then distributed to the PEs with matching index, additionally to the corresponding edges. Every PE has its own subgraph representation, where edges with an endpoint in another partition require special attention. For standard communication interfaces like MPI, the ID of the PE owning the other endpoint has to be identifiable. During computation in a distributed graph algorithms, passing information along these edges implies communication. |