更改

跳到导航 跳到搜索
添加79字节 、 2020年8月18日 (二) 12:43
第456行: 第456行:  
With this formulation, he described the concept of adiabatic accessibility for the first time and provided the foundation for a new subfield of classical thermodynamics, often called geometrical thermodynamics. It follows from Carathéodory's principle that quantity of energy quasi-statically transferred as heat is a holonomic process function, in other words, <math>\delta Q=TdS</math>.  
 
With this formulation, he described the concept of adiabatic accessibility for the first time and provided the foundation for a new subfield of classical thermodynamics, often called geometrical thermodynamics. It follows from Carathéodory's principle that quantity of energy quasi-statically transferred as heat is a holonomic process function, in other words, <math>\delta Q=TdS</math>.  
   −
通过这个阐明,他首次描述了'''<font color = '#ff8000'>绝热可达性 Adiabatic Accessibility</font>'''的概念,并为经典热力学的一个新的子领域,即通常所说的'''<font color = '#ff8000'>几何热力学  Geometrical Thermodynamics</font>'''<font color = 'red'><s>奠定了基础</s></font>。由卡拉西奥多里原理可以推出,作为热的能量的准静态转移是一个'''<font color="#ff8000"> 完整的过程函数holonomic process function</font>'''即<math>\delta Q=TdS</math>。
+
通过这个阐明,他首次描述了'''<font color = '#ff8000'>绝热可达性 Adiabatic Accessibility</font>'''的概念,并为经典热力学的一个新的子领域,即通常所说的'''<font color = '#ff8000'>几何热力学  Geometrical Thermodynamics</font>'''奠定了基础。由卡拉西奥多里原理可以推出,作为热的能量的准静态转移是一个'''<font color="#ff8000"> 完整的过程函数holonomic process function</font>'''即<math>\delta Q=TdS</math>。
    
  --[[用户:Dorr|Dorr]]([[用户讨论:Dorr|讨论]])准静态转移的热量值是一个可积过程函数 存疑
 
  --[[用户:Dorr|Dorr]]([[用户讨论:Dorr|讨论]])准静态转移的热量值是一个可积过程函数 存疑
第463行: 第463行:     
  --[[用户:Dorr|Dorr]]([[用户讨论:Dorr|讨论]])奠定了基础为何要删????????????????????????????????????????
 
  --[[用户:Dorr|Dorr]]([[用户讨论:Dorr|讨论]])奠定了基础为何要删????????????????????????????????????????
 +
--[[用户:嘉树|嘉树]]([[用户讨论:嘉树|讨论]]) 不好意思,不应该删,已经改回来了
    
Though it is almost customary in textbooks to say that Carathéodory's principle expresses the second law and to treat it as equivalent to the Clausius or to the Kelvin-Planck statements, such is not the case. To get all the content of the second law, Carathéodory's principle needs to be supplemented by Planck's principle, that isochoric work always increases the internal energy of a closed system that was initially in its own internal thermodynamic equilibrium.<ref name="Munster 45">Münster, A. (1970), p. 45.</ref>{{sfnp|Lieb|Yngvason|1999|p=49}}<ref name="Planck 1926">[[Max Planck|Planck, M.]] (1926).</ref><ref>Buchdahl, H.A. (1966), p. 69.</ref> {{clarify|date=February 2014}}
 
Though it is almost customary in textbooks to say that Carathéodory's principle expresses the second law and to treat it as equivalent to the Clausius or to the Kelvin-Planck statements, such is not the case. To get all the content of the second law, Carathéodory's principle needs to be supplemented by Planck's principle, that isochoric work always increases the internal energy of a closed system that was initially in its own internal thermodynamic equilibrium.<ref name="Munster 45">Münster, A. (1970), p. 45.</ref>{{sfnp|Lieb|Yngvason|1999|p=49}}<ref name="Planck 1926">[[Max Planck|Planck, M.]] (1926).</ref><ref>Buchdahl, H.A. (1966), p. 69.</ref> {{clarify|date=February 2014}}
259

个编辑

导航菜单