更改

跳到导航 跳到搜索
添加2,448字节 、 2020年8月22日 (六) 20:30
无编辑摘要
第24行: 第24行:     
单击Properties按钮,你可以改变这群Floy的属性,首先我们为了从简单开始把Floy的个数更改为1个看看,点击OK返回以后再按一下Continue按钮,一只Floy在围绕着中心转,也许你会说,这没什么,不就是一个运动的点么?如果更改Floy的个数为2个,那么这两只Floy就会互相追逐着在屏幕上飞行,注意两只Floy的行为就会产生混沌模式了,也就是它们的运动方式几乎是完全不确定的。逐渐增加到15只以上你就会看到一大群生物在那里乱飞了,这很像我们现实世界中的苍蝇行为。点击Strangers按钮,你会看到一只红色的Floy从屏幕的左上角飞进来,注意,它的到来可不寻常,它是一个外来的入侵者!本来相安无事的绿色Floy因为它的到来而变得行为异常起来,它们会突然转过头来进攻红色的入侵者,而红色的Floy会赶忙逃跑。继续点击Strangers按钮,就会有不断的入侵者加入进来,同时原有的Floy群体在减少。你会看到有两群苍蝇在那里追逐。绿色的Floy是本地居民,它会进攻入侵者最后将它杀死。如果幸运,你甚至会看到绿色的Floy们会使用诡计,它们先若无其事的在一起飞即使身边就有一只红色的入侵者,但是突然之间,它会转过头来进攻红色的,让它来不及逃跑。点击Default按钮可以恢复原状。
 
单击Properties按钮,你可以改变这群Floy的属性,首先我们为了从简单开始把Floy的个数更改为1个看看,点击OK返回以后再按一下Continue按钮,一只Floy在围绕着中心转,也许你会说,这没什么,不就是一个运动的点么?如果更改Floy的个数为2个,那么这两只Floy就会互相追逐着在屏幕上飞行,注意两只Floy的行为就会产生混沌模式了,也就是它们的运动方式几乎是完全不确定的。逐渐增加到15只以上你就会看到一大群生物在那里乱飞了,这很像我们现实世界中的苍蝇行为。点击Strangers按钮,你会看到一只红色的Floy从屏幕的左上角飞进来,注意,它的到来可不寻常,它是一个外来的入侵者!本来相安无事的绿色Floy因为它的到来而变得行为异常起来,它们会突然转过头来进攻红色的入侵者,而红色的Floy会赶忙逃跑。继续点击Strangers按钮,就会有不断的入侵者加入进来,同时原有的Floy群体在减少。你会看到有两群苍蝇在那里追逐。绿色的Floy是本地居民,它会进攻入侵者最后将它杀死。如果幸运,你甚至会看到绿色的Floy们会使用诡计,它们先若无其事的在一起飞即使身边就有一只红色的入侵者,但是突然之间,它会转过头来进攻红色的,让它来不及逃跑。点击Default按钮可以恢复原状。
 +
    
===模型的规则===
 
===模型的规则===
第39行: 第40行:     
总体来说,Floy的规则就是选择自己的加速度,并且这种选择仅仅跟自己的邻居有关,也就是说规则都是局部的。而这个程序的关键是要体现整体行为的涌现,也就是说虽然微观上每个Floy个体的规则都是简单的局部的,但是在集体涌现出来的现象却是复杂的并且是不可预测的。人工生命的精髓就是:其实生命现象本身不过是由微观的简单相互作用规律涌现出来的集体复杂行为。
 
总体来说,Floy的规则就是选择自己的加速度,并且这种选择仅仅跟自己的邻居有关,也就是说规则都是局部的。而这个程序的关键是要体现整体行为的涌现,也就是说虽然微观上每个Floy个体的规则都是简单的局部的,但是在集体涌现出来的现象却是复杂的并且是不可预测的。人工生命的精髓就是:其实生命现象本身不过是由微观的简单相互作用规律涌现出来的集体复杂行为。
 +
    
===模型的参数===
 
===模型的参数===
第72行: 第74行:  
*[[生生不息]]
 
*[[生生不息]]
    +
 +
==编者推荐==
 +
===书籍推荐===
 +
[[File:复杂.jpg|200px|thumb|right|《复杂》封面]]
 +
*[https://vdisk.weibo.com/s/BTLfj870SYIar 《复杂》 梅拉妮·米歇尔]
 +
蚂蚁在组成群体时为何会表现出如此的精密性和具有目的性?数以亿计的神经元是如何产生出像意识这样极度复杂的事物?是什么在引导免疫系统、互联网、全球经济和人类基因组等自组织结构?这些都是复杂系统科学尝试回答的迷人而令人费解的问题的一部分。理解复杂系统需要有全新的方法,需要超过传统的科学还原论,并重新划定学科的疆域。借助于圣塔菲研究所的工作经历和交叉学科方法,复杂系统的前沿科学家米歇尔在《复杂》一书中,以清晰的思路介绍了复杂系统的研究,横跨生物、技术和社会学等领域,并探寻复杂系统的普遍规律。与此同时,她还探讨了复杂性与进化、人工智能、计算、遗传、信息处理等领域的关系。
 +
 +
 +
===文章推荐===
 +
*[https://zhuanlan.zhihu.com/p/97717680 超越简单规则——用图神经网络对复杂系统进行自动建模]
 +
::近期,由北京师范大学张江团队发表的文章《A general deep learning framework for network reconstruction and dynamics learning》在期刊Applied Network Science上刊登,这篇文章提出了一种基于深度学习的数据驱动模型,可以从节点的时间演化数据中重构出网络结构,并且学习到系统的动力学。本文是第一作者张章对该文章内容的解读。
 +
 +
 +
===课程推荐===
 +
*[https://campus.swarma.org/course/1095 NetLogo多主体建模入门]
 +
::本课程通过数个案例教会大家如何去动手搭建一个多主体仿真模型,以及如何利用NetLogo去实现。从生命游戏到人工鸟群,从模拟经济系统到病毒沿网络的传播,通过循序渐进的案例,该课程带你逐步走入NetLogo多主体建模的神奇世界。
       +
*[https://campus.swarma.org/course/596 生物中的多主体模型]
 +
::本课程将视线转移到生物学领域,展现计算机模拟在生物学中的应用。认识自然现象,我们可以从物理、数学、生物、天文、化学等众多角度去解读,那么怎样将众多的知识综合起来转化为可以用计算机模拟的语言哪?本节课将通过一个模型案例来帮助我们打开思路,更好的去描述和模拟生物现象,
 
----
 
----
 
本中文词条由[[用户:Jake|Jake]]、[[用户:Wangting|Wangting]]用户参与编译,[[用户:乐多多|乐多多]]编辑,欢迎在讨论页面留言。
 
本中文词条由[[用户:Jake|Jake]]、[[用户:Wangting|Wangting]]用户参与编译,[[用户:乐多多|乐多多]]编辑,欢迎在讨论页面留言。
763

个编辑

导航菜单