更改

跳到导航 跳到搜索
添加1,183字节 、 2020年8月30日 (日) 16:38
第386行: 第386行:  
当分析师试图确定自变量 X 在多大程度上允许变量 Y 的出现时,可以使用 https://www.erim.eur.nl/centres/Necessary-condition-analysis/ '''<font color='#ff8000'>必要条件分析Necessary condition analysis(NCA)</font>'''(例如,“某个失业率(X)在多大程度上对某个通货膨胀率(Y)是必要的? ”)。 (多重)回归分析分析使用'''<font color='#ff8000'>加法逻辑additive logic</font>''',其中每个 X 变量可以产生结果,X 之间可以相互补偿(这些X都是充分的,但不是必要的) ,然而必要条件分析使用'''<font color='#ff8000'>必要逻辑necessity logic</font>''',其中一个或多个 X 变量允许结果的存在,但也可能不产生这个结果(它们是必要的,但不是充分的)。每个单一的必要条件都必须存在,变量之间不允许补偿。
 
当分析师试图确定自变量 X 在多大程度上允许变量 Y 的出现时,可以使用 https://www.erim.eur.nl/centres/Necessary-condition-analysis/ '''<font color='#ff8000'>必要条件分析Necessary condition analysis(NCA)</font>'''(例如,“某个失业率(X)在多大程度上对某个通货膨胀率(Y)是必要的? ”)。 (多重)回归分析分析使用'''<font color='#ff8000'>加法逻辑additive logic</font>''',其中每个 X 变量可以产生结果,X 之间可以相互补偿(这些X都是充分的,但不是必要的) ,然而必要条件分析使用'''<font color='#ff8000'>必要逻辑necessity logic</font>''',其中一个或多个 X 变量允许结果的存在,但也可能不产生这个结果(它们是必要的,但不是充分的)。每个单一的必要条件都必须存在,变量之间不允许补偿。
   −
==Analytical activities of data users==
+
 
 +
 
 +
==Analytical activities of data users 数据用户的分析活动==
    
Users may have particular data points of interest within a data set, as opposed to general messaging outlined above. Such low-level user analytic activities are presented in the following table. The taxonomy can also be organized by three poles of activities: retrieving values, finding data points, and arranging data points.<ref>Robert Amar, James Eagan, and John Stasko (2005) [http://www.cc.gatech.edu/~stasko/papers/infovis05.pdf "Low-Level Components of Analytic Activity in Information Visualization"]</ref><ref>William Newman (1994) [http://www.mdnpress.com/wmn/pdfs/chi94-pro-formas-2.pdf "A Preliminary Analysis of the Products of HCI Research, Using Pro Forma Abstracts"]</ref><ref>Mary Shaw (2002) [https://www.cs.cmu.edu/~Compose/ftp/shaw-fin-etaps.pdf "What Makes Good Research in Software Engineering?"]</ref><ref name="ConTaaS">{{cite web|title=ConTaaS: An Approach to Internet-Scale Contextualisation for Developing Efficient Internet of Things Applications|url=https://scholarspace.manoa.hawaii.edu/handle/10125/41879|website=ScholarSpace|publisher=HICSS50|accessdate=May 24, 2017}}</ref>
 
Users may have particular data points of interest within a data set, as opposed to general messaging outlined above. Such low-level user analytic activities are presented in the following table. The taxonomy can also be organized by three poles of activities: retrieving values, finding data points, and arranging data points.<ref>Robert Amar, James Eagan, and John Stasko (2005) [http://www.cc.gatech.edu/~stasko/papers/infovis05.pdf "Low-Level Components of Analytic Activity in Information Visualization"]</ref><ref>William Newman (1994) [http://www.mdnpress.com/wmn/pdfs/chi94-pro-formas-2.pdf "A Preliminary Analysis of the Products of HCI Research, Using Pro Forma Abstracts"]</ref><ref>Mary Shaw (2002) [https://www.cs.cmu.edu/~Compose/ftp/shaw-fin-etaps.pdf "What Makes Good Research in Software Engineering?"]</ref><ref name="ConTaaS">{{cite web|title=ConTaaS: An Approach to Internet-Scale Contextualisation for Developing Efficient Internet of Things Applications|url=https://scholarspace.manoa.hawaii.edu/handle/10125/41879|website=ScholarSpace|publisher=HICSS50|accessdate=May 24, 2017}}</ref>
第392行: 第394行:  
Users may have particular data points of interest within a data set, as opposed to general messaging outlined above. Such low-level user analytic activities are presented in the following table. The taxonomy can also be organized by three poles of activities: retrieving values, finding data points, and arranging data points.
 
Users may have particular data points of interest within a data set, as opposed to general messaging outlined above. Such low-level user analytic activities are presented in the following table. The taxonomy can also be organized by three poles of activities: retrieving values, finding data points, and arranging data points.
   −
与上面概述的一般消息传递相反,用户可能对数据集中的特定数据点感兴趣。下表介绍了这种低层次的用户分析活动。分类还可以由三个活动极点组织: 检索值、查找数据点和排列数据点。
+
与上面概述的一般的消息传递不同,用户可能对数据集当中的特定数据点感兴趣。下表介绍了这种低层次的用户分析活动。分类可以由活动的三个极来组织: '''<font color='#ff8000'>检索值retrieving values</font>'''、'''<font color='#ff8000'>查找数据点finding data points</font>'''和'''<font color='#ff8000'>排列数据点arranging data points</font>'''。
      第406行: 第408行:  
! align="center" | # !! width="160" | Task !! General<br />Description !! Pro Forma<br />Abstract !! width="35%" | Examples
 
! align="center" | # !! width="160" | Task !! General<br />Description !! Pro Forma<br />Abstract !! width="35%" | Examples
   −
!对齐“中心” !宽度160 | 任务! !一般介绍!形式 / 摘要!宽度“35% | 例子
+
!align="center" | # !! width="160" | Task !! General<br />Description !! Pro Forma<br />Abstract !! width="35%" | Examples
    
|-
 
|-
第418行: 第420行:  
| align="center" | 1
 
| align="center" | 1
   −
对齐”中心”
+
| align="center" | 1
    
| '''Retrieve Value'''
 
| '''Retrieve Value'''
第424行: 第426行:  
| Retrieve Value
 
| Retrieve Value
   −
| 检索价值
+
| '''<font color='#ff8000'>检索值Retrieve Value</font>'''
    
| Given a set of specific cases, find attributes of those cases.
 
| Given a set of specific cases, find attributes of those cases.
第430行: 第432行:  
| Given a set of specific cases, find attributes of those cases.
 
| Given a set of specific cases, find attributes of those cases.
   −
给定一组特定的案例,找出这些案例的属性。
+
| 给定特定的一组案例,找出这些案例的属性。
    
| What are the values of attributes {X, Y, Z, ...} in the data cases {A, B, C, ...}?
 
| What are the values of attributes {X, Y, Z, ...} in the data cases {A, B, C, ...}?
第436行: 第438行:  
| What are the values of attributes {X, Y, Z, ...} in the data cases {A, B, C, ...}?
 
| What are the values of attributes {X, Y, Z, ...} in the data cases {A, B, C, ...}?
   −
| 数据案例{ a,b,c,... }中属性{ x,y,z,... }的值是什么?
+
| 数据案例{A, B, C, ... }中属性{ X, Y, Z, ... }的值是什么?
    
| ''- What is the mileage per gallon of the Ford Mondeo?''
 
| ''- What is the mileage per gallon of the Ford Mondeo?''
第442行: 第444行:  
| - What is the mileage per gallon of the Ford Mondeo?
 
| - What is the mileage per gallon of the Ford Mondeo?
   −
|-福特蒙迪欧每加仑汽油行驶里程是多少?
+
| -每加仑汽油在福特Mondeo车上的行驶里程是多少?”
    
''- How long is the movie Gone with the Wind?''
 
''- How long is the movie Gone with the Wind?''
第448行: 第450行:  
- How long is the movie Gone with the Wind?
 
- How long is the movie Gone with the Wind?
   −
电影《乱世佳人》有多长?
+
“-电影《乱世佳人》有多长?”
    
|-
 
|-
第460行: 第462行:  
| align="center" | 2
 
| align="center" | 2
   −
对齐“ center” | 2
+
| align="center" | 2
    
| ''' Filter'''
 
| ''' Filter'''
第466行: 第468行:  
|  Filter
 
|  Filter
   −
滤镜
+
|  '''<font color='#ff8000'>过滤Filter </font>'''
    
| Given some concrete conditions on attribute values, find data cases satisfying those conditions.
 
| Given some concrete conditions on attribute values, find data cases satisfying those conditions.
第472行: 第474行:  
| Given some concrete conditions on attribute values, find data cases satisfying those conditions.
 
| Given some concrete conditions on attribute values, find data cases satisfying those conditions.
   −
给定属性值的一些具体条件,找出满足这些条件的数据案例。
+
| 给定属性值的一些具体条件,找出满足这些条件的数据案例。
    
| Which data cases satisfy conditions {A, B, C...}?
 
| Which data cases satisfy conditions {A, B, C...}?
第478行: 第480行:  
| Which data cases satisfy conditions {A, B, C...}?
 
| Which data cases satisfy conditions {A, B, C...}?
   −
| 哪些数据案例满足条件{ a,b,c. . . } ?
+
| 哪些数据案例满足条件{A, B, C... } ?
    
| ''- What Kellogg's cereals have high fiber?''
 
| ''- What Kellogg's cereals have high fiber?''
第484行: 第486行:  
| - What Kellogg's cereals have high fiber?
 
| - What Kellogg's cereals have high fiber?
   −
|-什么家乐氏麦片含有高纤维?
+
|-“什么家乐氏麦片含有高纤维?(注:Kellogg‘s (家乐氏) 公司为全球知名谷物早餐和零食制造商。)”
    
''- What comedies have won awards?''
 
''- What comedies have won awards?''
第490行: 第492行:  
- What comedies have won awards?
 
- What comedies have won awards?
   −
- 哪些喜剧获奖?
+
- “哪些喜剧获了奖?”
      第498行: 第500行:  
- Which funds underperformed the SP-500?
 
- Which funds underperformed the SP-500?
   −
哪些基金表现不如 SP-500?
+
“-哪些基金的表现不如 SP-500?”
    
|-
 
|-
第510行: 第512行:  
| align="center" | 3
 
| align="center" | 3
   −
对齐中心
+
| align="center" | 3
    
| '''Compute Derived Value'''
 
| '''Compute Derived Value'''
第516行: 第518行:  
| Compute Derived Value
 
| Compute Derived Value
   −
| 计算派生值
+
| '''<font color='#ff8000'>计算派生值Compute Derived Value</font>'''
    
| Given a set of data cases, compute an aggregate numeric representation of those data cases.
 
| Given a set of data cases, compute an aggregate numeric representation of those data cases.
第522行: 第524行:  
| Given a set of data cases, compute an aggregate numeric representation of those data cases.
 
| Given a set of data cases, compute an aggregate numeric representation of those data cases.
   −
| 给定一组数据用例,计算这些数据用例的聚合数值表示形式。
+
| 给定一组数据案例,计算这些数据案例以聚合形式表示的数值。
    
| What is the value of aggregation function F over a given set S of data cases?
 
| What is the value of aggregation function F over a given set S of data cases?
第528行: 第530行:  
| What is the value of aggregation function F over a given set S of data cases?
 
| What is the value of aggregation function F over a given set S of data cases?
   −
| 聚合函数 f 在给定数据集 s 上的值是多少?
+
| '''<font color='#ff8000'>聚合函数aggregation function </font>'''F 在给定数据集 S 上的值是多少?
    
| ''- What is the average calorie content of Post cereals?''
 
| ''- What is the average calorie content of Post cereals?''
第534行: 第536行:  
| - What is the average calorie content of Post cereals?
 
| - What is the average calorie content of Post cereals?
   −
波斯特谷物的平均热量是多少?
+
| “-'''<font color='#ff8000'>波斯特谷物Post cereals</font>'''的平均热量是多少?”
    
''- What is the gross income of all stores combined?''
 
''- What is the gross income of all stores combined?''
第540行: 第542行:  
- What is the gross income of all stores combined?
 
- What is the gross income of all stores combined?
   −
所有商店的总收入是多少?
+
“-所有商店的总收入是多少?”
      第548行: 第550行:  
- How many manufacturers of cars are there?
 
- How many manufacturers of cars are there?
   −
有多少汽车制造商?
+
“-有多少汽车制造商?”
    
|-
 
|-
第560行: 第562行:  
| align="center" | 4
 
| align="center" | 4
   −
对齐”中心”
+
| align="center" | 4
    
| '''Find Extremum'''
 
| '''Find Extremum'''
第566行: 第568行:  
| Find Extremum
 
| Find Extremum
   −
| 寻找极端情况
+
| '''<font color='#ff8000'>寻找极值Find Extremum</font>'''
    
| Find data cases possessing an extreme value of an attribute over its range within the data set.
 
| Find data cases possessing an extreme value of an attribute over its range within the data set.
第572行: 第574行:  
| Find data cases possessing an extreme value of an attribute over its range within the data set.
 
| Find data cases possessing an extreme value of an attribute over its range within the data set.
   −
| 查找数据集中具有属性在其范围内的极值的数据案例。
+
| 查找数据集中在某属性的某范围内具有极端取值的数据案例。
    
| What are the top/bottom N data cases with respect to attribute A?
 
| What are the top/bottom N data cases with respect to attribute A?
第578行: 第580行:  
| What are the top/bottom N data cases with respect to attribute A?
 
| What are the top/bottom N data cases with respect to attribute A?
   −
| 关于属性 a 的顶部 / 底部 n 个数据用例是什么?
+
| 属性 A 的顶部或底部的 N 个数据案例是什么?
 +
 
    
| ''- What is the car with the highest MPG?''
 
| ''- What is the car with the highest MPG?''
第584行: 第587行:  
| - What is the car with the highest MPG?
 
| - What is the car with the highest MPG?
   −
什么是最高 MPG 的汽车?
+
|“- 有最高 MPG 的汽车是什么?”
    
''- What director/film has won the most awards?''
 
''- What director/film has won the most awards?''
第590行: 第593行:  
- What director/film has won the most awards?
 
- What director/film has won the most awards?
   −
- 哪部导演 / 电影获奖最多?
+
- 哪个导演/哪部电影获奖最多?”
      第598行: 第601行:  
- What Marvel Studios film has the most recent release date?
 
- What Marvel Studios film has the most recent release date?
   −
- 漫威电影公司的哪部电影最近上映日期?
+
- 哪部漫威电影公司的电影具有最近上映的日期?”
    
|-
 
|-
第610行: 第613行:  
| align="center" | 5
 
| align="center" | 5
   −
对齐”中心”
+
| align="center" | 5
    
| '''Sort'''
 
| '''Sort'''
第616行: 第619行:  
| Sort
 
| Sort
   −
| 排序
+
| '''<font color='#ff8000'>排序Sort</font>'''
    
| Given a set of data cases, rank them according to some ordinal metric.
 
| Given a set of data cases, rank them according to some ordinal metric.
第622行: 第625行:  
| Given a set of data cases, rank them according to some ordinal metric.
 
| Given a set of data cases, rank them according to some ordinal metric.
   −
给定一组数据案例,根据某种序数度量对它们进行排序。
+
| 给定一组数据案例,根据某种顺序度量对它们进行排序。
    
| What is the sorted order of a set S of data cases according to their value of attribute A?
 
| What is the sorted order of a set S of data cases according to their value of attribute A?
第628行: 第631行:  
| What is the sorted order of a set S of data cases according to their value of attribute A?
 
| What is the sorted order of a set S of data cases according to their value of attribute A?
   −
| 根据属性 a 的值,一组数据案例的排序顺序是什么?
+
| 根据属性 A 的值,一组数据案例 S 怎样排序?
    
| ''- Order the cars by weight.''
 
| ''- Order the cars by weight.''
第634行: 第637行:  
| - Order the cars by weight.
 
| - Order the cars by weight.
   −
|-按重量订购汽车。
+
| -按重量给汽车排序。”
    
''- Rank the cereals by calories.''
 
''- Rank the cereals by calories.''
第640行: 第643行:  
- Rank the cereals by calories.
 
- Rank the cereals by calories.
   −
- 按卡路里排列谷物。
+
- 按卡路里排列谷物。”
    
|-
 
|-
第652行: 第655行:  
| align="center" | 6
 
| align="center" | 6
   −
对齐”中心”
+
| align="center" | 6
    
| '''Determine Range'''
 
| '''Determine Range'''
第658行: 第661行:  
| Determine Range
 
| Determine Range
   −
| 确定范围
+
| '''<font color='#ff8000'>确定范围Determine Range</font>'''
    
| Given a set of data cases and an attribute of interest, find the span of values within the set.
 
| Given a set of data cases and an attribute of interest, find the span of values within the set.
第664行: 第667行:  
| Given a set of data cases and an attribute of interest, find the span of values within the set.
 
| Given a set of data cases and an attribute of interest, find the span of values within the set.
   −
| 给定一组数据用例和一个感兴趣的属性,查找该组中的值的范围。
+
| 给定一组数据案例和一个感兴趣的属性,查找该组中的值的范围。
    
| What is the range of values of attribute A in a set S of data cases?
 
| What is the range of values of attribute A in a set S of data cases?
第670行: 第673行:  
| What is the range of values of attribute A in a set S of data cases?
 
| What is the range of values of attribute A in a set S of data cases?
   −
| 在一组数据案例中,属性 a 的值范围是多少?
+
| 在一组数据案例 S 中,属性 A 的值范围是多少?
    
| ''- What is the range of film lengths?''
 
| ''- What is the range of film lengths?''
第676行: 第679行:  
| - What is the range of film lengths?
 
| - What is the range of film lengths?
   −
|-胶卷的长度范围是多少?
+
| -胶卷的长度范围是多少?”
    
''- What is the range of car horsepowers?''
 
''- What is the range of car horsepowers?''
第682行: 第685行:  
- What is the range of car horsepowers?
 
- What is the range of car horsepowers?
   −
汽车的马力范围是多少?
+
“-汽车的马力范围是多少?”
      第690行: 第693行:  
- What actresses are in the data set?
 
- What actresses are in the data set?
   −
数据库里有哪些女演员?
+
“-数据库里有哪些女演员?”
    
|-
 
|-
第702行: 第705行:  
| align="center" | 7
 
| align="center" | 7
   −
对齐”中心”
+
| align="center" | 7
    
| '''Characterize Distribution'''
 
| '''Characterize Distribution'''
第708行: 第711行:  
| Characterize Distribution
 
| Characterize Distribution
   −
| 特征分布
+
| '''<font color='#ff8000'>特征分布Characterize Distribution</font>'''
    
| Given a set of data cases and a quantitative attribute of interest, characterize the distribution of that attribute's values over the set.
 
| Given a set of data cases and a quantitative attribute of interest, characterize the distribution of that attribute's values over the set.
第714行: 第717行:  
| Given a set of data cases and a quantitative attribute of interest, characterize the distribution of that attribute's values over the set.
 
| Given a set of data cases and a quantitative attribute of interest, characterize the distribution of that attribute's values over the set.
   −
| 给定一组数据用例和一个感兴趣的数量属性,刻画该属性值在该集上的分布情况。
+
| 给定一组数据案例和一个感兴趣的定量属性,刻画该属性值在该集上的分布情况。
    
| What is the distribution of values of attribute A in a set S of data cases?
 
| What is the distribution of values of attribute A in a set S of data cases?
第720行: 第723行:  
| What is the distribution of values of attribute A in a set S of data cases?
 
| What is the distribution of values of attribute A in a set S of data cases?
   −
| 属性 a 的值在一组数据案例中的分布情况如何?
+
| 属性 A 的值在一组数据案例 S 中的分布情况如何?
    
| ''- What is the distribution of carbohydrates in cereals?''
 
| ''- What is the distribution of carbohydrates in cereals?''
第726行: 第729行:  
| - What is the distribution of carbohydrates in cereals?
 
| - What is the distribution of carbohydrates in cereals?
   −
|-谷物中碳水化合物的分布情况如何?
+
|-谷物中碳水化合物的分布情况如何?”
    
''- What is the age distribution of shoppers?''
 
''- What is the age distribution of shoppers?''
第732行: 第735行:  
- What is the age distribution of shoppers?
 
- What is the age distribution of shoppers?
   −
购物者的年龄分布情况如何?
+
“-购物者的年龄分布情况如何?”
    
|-
 
|-
第744行: 第747行:  
| align="center" | 8
 
| align="center" | 8
   −
对齐“ center” | 8
+
| align="center" | 8
    
| '''Find Anomalies'''
 
| '''Find Anomalies'''
第750行: 第753行:  
| Find Anomalies
 
| Find Anomalies
   −
寻找异常点
+
| '''<font color='#ff8000'>寻找异常值Find Anomalies</font>'''
    
| Identify any anomalies within a given set of data cases with respect to a given relationship or expectation, e.g. statistical outliers.
 
| Identify any anomalies within a given set of data cases with respect to a given relationship or expectation, e.g. statistical outliers.
第756行: 第759行:  
| Identify any anomalies within a given set of data cases with respect to a given relationship or expectation, e.g. statistical outliers.
 
| Identify any anomalies within a given set of data cases with respect to a given relationship or expectation, e.g. statistical outliers.
   −
识别给定数据集中与给定关系或期望有关的任何异常,例如:。统计异常值。
+
| 识别给定数据集中与给定关系或期望有关的任何异常值,例如统计异常值。
    
| Which data cases in a set S of data cases have unexpected/exceptional values?
 
| Which data cases in a set S of data cases have unexpected/exceptional values?
第762行: 第765行:  
| Which data cases in a set S of data cases have unexpected/exceptional values?
 
| Which data cases in a set S of data cases have unexpected/exceptional values?
   −
| 在一组数据情况中,哪些数据情况具有意外 / 异常值?
+
| 在一组数据案例中,哪些数据案例具有意外的或异常的取值?
    
| ''- Are there exceptions to the relationship between horsepower and acceleration?''
 
| ''- Are there exceptions to the relationship between horsepower and acceleration?''
第768行: 第771行:  
| - Are there exceptions to the relationship between horsepower and acceleration?
 
| - Are there exceptions to the relationship between horsepower and acceleration?
   −
|-马力和加速度之间的关系有例外吗?
+
|-马力和加速度之间的关系有例外吗?”
    
''- Are there any outliers in protein?''
 
''- Are there any outliers in protein?''
第774行: 第777行:  
- Are there any outliers in protein?
 
- Are there any outliers in protein?
   −
蛋白质中是否有异常值?
+
“-蛋白质是否有异常值?”
    
|-
 
|-
第786行: 第789行:  
| align="center" | 9
 
| align="center" | 9
   −
对齐”中心”
+
| align="center" | 9
    
| '''Cluster'''
 
| '''Cluster'''
第792行: 第795行:  
| Cluster
 
| Cluster
   −
| Cluster
+
| '''<font color='#ff8000'>Cluster 集群<font>'''
    
| Given a set of data cases, find clusters of similar attribute values.
 
| Given a set of data cases, find clusters of similar attribute values.
第798行: 第801行:  
| Given a set of data cases, find clusters of similar attribute values.
 
| Given a set of data cases, find clusters of similar attribute values.
   −
| 给定一组数据用例,找出相似属性值的集群。
+
| 给定一组数据案例,找出相似属性值的集群。
    
| Which data cases in a set S of data cases are similar in value for attributes {X, Y, Z, ...}?
 
| Which data cases in a set S of data cases are similar in value for attributes {X, Y, Z, ...}?
第804行: 第807行:  
| Which data cases in a set S of data cases are similar in value for attributes {X, Y, Z, ...}?
 
| Which data cases in a set S of data cases are similar in value for attributes {X, Y, Z, ...}?
   −
| 一组数据用例中的哪些数据用例在属性{ x,y,z,... }的值上相似?
+
| 一组数据案例中的哪些数据案例在属性{ X, Y, Z, ... }的值上相似?
    
| ''- Are there groups of cereals w/ similar fat/calories/sugar?''
 
| ''- Are there groups of cereals w/ similar fat/calories/sugar?''
第810行: 第813行:  
| - Are there groups of cereals w/ similar fat/calories/sugar?
 
| - Are there groups of cereals w/ similar fat/calories/sugar?
   −
|-有没有类似脂肪 / 卡路里 / 糖的谷类食物?
+
|-有没有含脂肪 / 卡路里 / 糖类似的谷类食物?”
    
''- Is there a cluster of typical film lengths?''
 
''- Is there a cluster of typical film lengths?''
第816行: 第819行:  
- Is there a cluster of typical film lengths?
 
- Is there a cluster of typical film lengths?
   −
是否有一组典型的胶片长度?
+
“-是否有一组典型的电影长度?”
    
|-
 
|-
第828行: 第831行:  
| align="center" | 10
 
| align="center" | 10
   −
对齐中心
+
| align="center" | 10
    
| '''Correlate'''
 
| '''Correlate'''
第834行: 第837行:  
| Correlate
 
| Correlate
   −
| Correlate
+
| '''<font color='#ff8000'>相关Correlate</font>'''
    
| Given a set of data cases and two attributes, determine useful relationships between the values of those attributes.
 
| Given a set of data cases and two attributes, determine useful relationships between the values of those attributes.
第840行: 第843行:  
| Given a set of data cases and two attributes, determine useful relationships between the values of those attributes.
 
| Given a set of data cases and two attributes, determine useful relationships between the values of those attributes.
   −
| 给定一组数据用例和两个属性,确定这些属性值之间的有用关系。
+
| 给定一组数据案例和两个属性,确定这些属性值之间的有用关系。
    
| What is the correlation between attributes X and Y over a given set S of data cases?
 
| What is the correlation between attributes X and Y over a given set S of data cases?
第846行: 第849行:  
| What is the correlation between attributes X and Y over a given set S of data cases?
 
| What is the correlation between attributes X and Y over a given set S of data cases?
   −
| 在给定的数据案例集 s 中,属性 x y 之间的相关性是什么?
+
| 在给定的数据案例集 S 中,属性 X Y 之间的相关性是什么?
    
| ''- Is there a correlation between carbohydrates and fat?''
 
| ''- Is there a correlation between carbohydrates and fat?''
第852行: 第855行:  
| - Is there a correlation between carbohydrates and fat?
 
| - Is there a correlation between carbohydrates and fat?
   −
|-碳水化合物和脂肪之间有关系吗?
+
|-碳水化合物和脂肪之间有关系吗?”
    
''- Is there a correlation between country of origin and MPG?''
 
''- Is there a correlation between country of origin and MPG?''
第858行: 第861行:  
- Is there a correlation between country of origin and MPG?
 
- Is there a correlation between country of origin and MPG?
   −
起源国和 MPG 之间有联系吗?
+
“-起源国和 MPG 之间有联系吗?”
      第866行: 第869行:  
- Do different genders have a preferred payment method?
 
- Do different genders have a preferred payment method?
   −
- 不同性别是否有首选的付款方式?
+
- 不同性别是否倾向不同的付款方式?”
      第874行: 第877行:  
- Is there a trend of increasing film length over the years?
 
- Is there a trend of increasing film length over the years?
   −
- 电影长度是否有逐年增加的趋势?
+
- 电影长度是否有逐年增加的趋势?”
    
|-
 
|-
第886行: 第889行:  
| align="center" | 11
 
| align="center" | 11
   −
11点,中心对齐
+
| align="center" | 11
    
| ''' [[Contextualization (computer science)|Contextualization]]<ref name="ConTaaS"/>'''
 
| ''' [[Contextualization (computer science)|Contextualization]]<ref name="ConTaaS"/>'''
第892行: 第895行:  
|  Contextualization
 
|  Contextualization
   −
| 语境化
+
| '''<font color='#ff8000'>语境化Contextualization</font>'''
    
| Given a set of data cases, find contextual relevancy of the data to the users.
 
| Given a set of data cases, find contextual relevancy of the data to the users.
第898行: 第901行:  
| Given a set of data cases, find contextual relevancy of the data to the users.
 
| Given a set of data cases, find contextual relevancy of the data to the users.
   −
| 给定一组数据案例,找出数据与用户上下文的相关性。
+
| 给定一组数据案例,找出数据与用户语境化的相关性。
    
| Which data cases in a set S of data cases are relevant to the current users' context?
 
| Which data cases in a set S of data cases are relevant to the current users' context?
第904行: 第907行:  
| Which data cases in a set S of data cases are relevant to the current users' context?
 
| Which data cases in a set S of data cases are relevant to the current users' context?
   −
| 一组数据用例中的哪些数据用例与当前用户的上下文相关?
+
| 一组数据案例中的哪些数据案例与当前用户的语境相关?
    
| ''- Are there groups of restaurants that have foods based on my current caloric intake?''
 
| ''- Are there groups of restaurants that have foods based on my current caloric intake?''
第910行: 第913行:  
| - Are there groups of restaurants that have foods based on my current caloric intake?
 
| - Are there groups of restaurants that have foods based on my current caloric intake?
   −
|-是否有几组餐馆根据我目前摄入的热量来提供食物?
+
|-是否有几组餐馆根据我目前摄入的热量来提供食物?”
    
|-
 
|-
第923行: 第926行:     
|}
 
|}
  −
      
==Barriers to effective analysis==
 
==Barriers to effective analysis==
259

个编辑

导航菜单