第524行: |
第524行: |
| | | |
| * The maximum distance between elements of each cluster (also called [[complete-linkage clustering]]): | | * The maximum distance between elements of each cluster (also called [[complete-linkage clustering]]): |
− | | + | *每个簇元素之间的最大距离(又名[[完全链路集]]) |
| ::<math> \max \{\, d(x,y) : x \in \mathcal{A},\, y \in \mathcal{B}\,\}. </math> | | ::<math> \max \{\, d(x,y) : x \in \mathcal{A},\, y \in \mathcal{B}\,\}. </math> |
| | | |
第532行: |
第532行: |
| | | |
| * The minimum distance between elements of each cluster (also called [[single-linkage clustering]]): | | * The minimum distance between elements of each cluster (also called [[single-linkage clustering]]): |
− | | + | *每个簇的元素之间的最小距离(也称为[[单个链路集]]): |
| ::<math> \min \{\, d(x,y) : x \in \mathcal{A},\, y \in \mathcal{B} \,\}. </math> | | ::<math> \min \{\, d(x,y) : x \in \mathcal{A},\, y \in \mathcal{B} \,\}. </math> |
| | | |
第540行: |
第540行: |
| | | |
| * The mean distance between elements of each cluster (also called average linkage clustering, used e.g. in [[UPGMA]]): | | * The mean distance between elements of each cluster (also called average linkage clustering, used e.g. in [[UPGMA]]): |
− | | + | *每个簇元素之间的平均距离(也称为平均链路集): |
| ::<math> {1 \over {|\mathcal{A}|\cdot|\mathcal{B}|}}\sum_{x \in \mathcal{A}}\sum_{ y \in \mathcal{B}} d(x,y). </math> | | ::<math> {1 \over {|\mathcal{A}|\cdot|\mathcal{B}|}}\sum_{x \in \mathcal{A}}\sum_{ y \in \mathcal{B}} d(x,y). </math> |
| | | |
第548行: |
第548行: |
| | | |
| * The sum of all intra-cluster variance. | | * The sum of all intra-cluster variance. |
− | | + | *所有簇内方差之和。 |
| * The increase in variance for the cluster being merged ([[Ward's method]]<ref name="wards method"/>) | | * The increase in variance for the cluster being merged ([[Ward's method]]<ref name="wards method"/>) |
− | | + | *合并的聚类的方差增加([[离差平方和法]]<ref name="离差平方和法"/>)。 |
| * The probability that candidate clusters spawn from the same distribution function (V-linkage). | | * The probability that candidate clusters spawn from the same distribution function (V-linkage). |
− | | + | *候选集群从相同的分布函数中产生的概率(V—链路)。 |
| | | |
| | | |
第568行: |
第568行: |
| | | |
| 人们总是可以决定停止群集时,有一个足够少的群集(数目标准)。有些联系还可能保证集群之间的距离大于以前的集群,然后当集群之间的距离太远而无法合并时就可以停止集群(距离标准)。然而,这不是例如,质心链接的情况下,所谓的逆转(反转,偏离超节拍)可能发生的情况。 | | 人们总是可以决定停止群集时,有一个足够少的群集(数目标准)。有些联系还可能保证集群之间的距离大于以前的集群,然后当集群之间的距离太远而无法合并时就可以停止集群(距离标准)。然而,这不是例如,质心链接的情况下,所谓的逆转(反转,偏离超节拍)可能发生的情况。 |
− |
| |
− |
| |
| | | |
| == Divisive clustering分裂聚类 == | | == Divisive clustering分裂聚类 == |