更改

跳到导航 跳到搜索
添加29字节 、 2020年9月2日 (三) 19:19
第35行: 第35行:  
A closely related model, the Erdős–Rényi model denoted G(n,M), assigns equal probability to all graphs with exactly M edges. With 0 ≤ M ≤ N, G(n,M) has <math>\tbinom{N}{M}</math> elements and every element occurs with probability <math>1/\tbinom{N}{M}</math>.  The latter model can be viewed as a snapshot at a particular time (M) of the random graph process <math>\tilde{G}_n</math>, which is a stochastic process that starts with n vertices and no edges, and at each step adds one new edge chosen uniformly from the set of missing edges.
 
A closely related model, the Erdős–Rényi model denoted G(n,M), assigns equal probability to all graphs with exactly M edges. With 0 ≤ M ≤ N, G(n,M) has <math>\tbinom{N}{M}</math> elements and every element occurs with probability <math>1/\tbinom{N}{M}</math>.  The latter model can be viewed as a snapshot at a particular time (M) of the random graph process <math>\tilde{G}_n</math>, which is a stochastic process that starts with n vertices and no edges, and at each step adds one new edge chosen uniformly from the set of missing edges.
   −
一个密切相关的模型,erd s-Rényi 模型表示 g (n,m) ,给所有正好有 m 条边的图赋予等概率。当0≤ m ≤ n 时,g (n,m)具有 < math > tbinom { n } </math > 元素,且每个元素都以概率 < math > 1/tbinom { n } </math > 出现。后一个模型可以看作是随机图过程某个特定时间(m)的一个快照,这个时间(m)是从 n 个顶点开始没有边的一个随机过程,每个步骤均匀地从缺失的边集中选择一个新的边。
+
一个密切相关的模型,Erdős-Rényi 模型表示''G'' (''n'',''M''),给每一个正好有''M''条边的图赋予等概率。当0≤ ''M'' ''N'' 时,''G'' (''n'',''M'')具有 <math>\tbinom{N}{M}</math> 元素,且每个元素都以概率 <math>1/\tbinom{n}</math> 出现。后一个模型可以看作是随机图过程某个特定时间(''M'')的一个快照,这个时间(''M'')是从 n 个顶点开始没有边的一个随机过程,每个步骤均匀地从缺失的边集中选择一个新的边。
     
274

个编辑

导航菜单