第1行: |
第1行: |
− | 此词条暂由彩云小译翻译,未经人工整理和审校,带来阅读不便,请见谅。
| + | 本词条由Ryan初步翻译 |
| | | |
| {{Redirect|Geodesic distance|distances on the surface of a sphere|Great-circle distance|distances on the surface of the Earth|Geodesics on an ellipsoid|geodesics in differential geometry|Geodesic}} | | {{Redirect|Geodesic distance|distances on the surface of a sphere|Great-circle distance|distances on the surface of the Earth|Geodesics on an ellipsoid|geodesics in differential geometry|Geodesic}} |
第11行: |
第11行: |
| 在图论的数学领域中,图中两个顶点之间的距离是最短路径(也称为图测地线)中连接它们的边的数目。这也被称为测地距离。3 = Guitter,e. | date = July 2003 | | 在图论的数学领域中,图中两个顶点之间的距离是最短路径(也称为图测地线)中连接它们的边的数目。这也被称为测地距离。3 = Guitter,e. | date = July 2003 |
| | | |
− | |title=Geodesic distance in planar graphs |journal= Nuclear Physics B|volume=663 |issue=3 |pages=535–567 |quote=By distance we mean here geodesic distance along the graph, namely the length of any shortest path between say two given faces | + | |title=Geodesic distance in planar graphs |journal= Nuclear Physics B|volume=663 |issue=3 |pages=535–567 |quote=By distance we mean here geodesic distance along the graph, namely the length of any shortest path between say two given faces|doi=10.1016/S0550-3213(03)00355-9|arxiv=cond-mat/0303272 }}</ref> Notice that there may be more than one shortest path between two vertices.<ref> |
| | | |
− | |title=Geodesic distance in planar graphs |journal= Nuclear Physics B|volume=663 |issue=3 |pages=535–567 |quote=By distance we mean here geodesic distance along the graph, namely the length of any shortest path between say two given faces | + | |title=Geodesic distance in planar graphs |journal= Nuclear Physics B|volume=663 |issue=3 |pages=535–567 |quote=By distance we mean here geodesic distance along the graph, namely the length of any shortest path between say two given faces |doi=10.1016/S0550-3213(03)00355-9|arxiv=cond-mat/0303272 }}</ref> |
| | | |
− | | title = 平面图中的测地距离 | journal = Nuclear Physics b | volume = 663 | issue = 3 | pages = 535-567 | quote = 我们指的是图中的测地距离,即两个给定面之间任意最短路径的长度
| + | Notice that there may be more than one shortest path between two vertices.<ref> |
− | | |
− | |doi=10.1016/S0550-3213(03)00355-9|arxiv=cond-mat/0303272 }}</ref> Notice that there may be more than one shortest path between two vertices.<ref>
| |
− | | |
− | |doi=10.1016/S0550-3213(03)00355-9|arxiv=cond-mat/0303272 }}</ref> Notice that there may be more than one shortest path between two vertices.<ref>
| |
| | | |
| 注意,在两个顶点之间可能有一个以上的最短路径 | | 注意,在两个顶点之间可能有一个以上的最短路径 |
第33行: |
第29行: |
| |last=Weisstein |first=Eric W. |authorlink=Eric W. Weisstein |work=MathWorld--A Wolfram Web Resource | | |last=Weisstein |first=Eric W. |authorlink=Eric W. Weisstein |work=MathWorld--A Wolfram Web Resource |
| | | |
− | 数学世界---- 一个 Wolfram 网络资源
| + | |
| | | |
| |publisher= Wolfram Research | | |publisher= Wolfram Research |
第39行: |
第35行: |
| |publisher= Wolfram Research | | |publisher= Wolfram Research |
| | | |
− | 2012年3月24日 | publisher = 沃尔夫勒姆研究公司
| + | |
| | | |
| |quote=The length of the graph geodesic between these points d(u,v) is called the graph distance between u and v }} | | |quote=The length of the graph geodesic between these points d(u,v) is called the graph distance between u and v }} |
第45行: |
第41行: |
| |quote=The length of the graph geodesic between these points d(u,v) is called the graph distance between u and v }} | | |quote=The length of the graph geodesic between these points d(u,v) is called the graph distance between u and v }} |
| | | |
− | | quote = 这些点之间的测地线的长度 d (u,v)称为 u 和 v 之间的图距离}
| + | |
| | | |
| </ref> If there is no path connecting the two vertices, i.e., if they belong to different [[connected component (graph theory)|connected component]]s, then conventionally the distance is defined as infinite. | | </ref> If there is no path connecting the two vertices, i.e., if they belong to different [[connected component (graph theory)|connected component]]s, then conventionally the distance is defined as infinite. |
第51行: |
第47行: |
| </ref> If there is no path connecting the two vertices, i.e., if they belong to different connected components, then conventionally the distance is defined as infinite. | | </ref> If there is no path connecting the two vertices, i.e., if they belong to different connected components, then conventionally the distance is defined as infinite. |
| | | |
− | </ref > 如果没有路径连接两个顶点,也就是说,如果它们属于不同的连通分量,那么按照惯例,距离被定义为无穷大。
| + | 如果两个顶点间没有路径连接,也就是说,如果它们属于不同的连通分支,那么按照惯例,距离被定义为无穷大。 |
| | | |
| | | |
第59行: |
第55行: |
| In the case of a directed graph the distance <math>d(u,v)</math> between two vertices <math>u</math> and <math>v</math> is defined as the length of a shortest directed path from <math>u</math> to <math>v</math> consisting of arcs, provided at least one such path exists. Notice that, in contrast with the case of undirected graphs, <math>d(u,v)</math> does not necessarily coincide with <math>d(v,u)</math>, and it might be the case that one is defined while the other is not. | | In the case of a directed graph the distance <math>d(u,v)</math> between two vertices <math>u</math> and <math>v</math> is defined as the length of a shortest directed path from <math>u</math> to <math>v</math> consisting of arcs, provided at least one such path exists. Notice that, in contrast with the case of undirected graphs, <math>d(u,v)</math> does not necessarily coincide with <math>d(v,u)</math>, and it might be the case that one is defined while the other is not. |
| | | |
− | 在有向图的情况下,两个顶点之间的距离 < math > d (u,v) </math > 和 < math > v </math > 被定义为从 < math > u </math > 到 < math > v </math > 由弧组成的最短有向路径的长度,前提是至少存在一条这样的路径。请注意,与无向图的情况不同,< math > d (u,v) </math > 不一定与 < math > d (v,u) </math > 一致,而且可能一个是定义的,而另一个不是。
| + | 在有向图的情况下,两个顶点之间 <math>u</math>和<math>v</math>的距离<math>d(u,v)</math>被定义为从<math>u</math> 到 <math>v</math>由弧组成的最短有向路径的长度,前提是至少存在一条这样的路径。请注意,与无向图的情况不同, <math>d(u,v)</math> 不一定与<math>d(v,u)</math>一致,而且可能一个是被定义的,而另一个不是。 |
| | | |
| | | |
| | | |
− | ==Related concepts== | + | ==Related concepts 相关概念== |
| | | |
| A [[metric space]] defined over a set of points in terms of distances in a graph defined over the set is called a '''graph metric'''. | | A [[metric space]] defined over a set of points in terms of distances in a graph defined over the set is called a '''graph metric'''. |
第75行: |
第71行: |
| The vertex set (of an undirected graph) and the distance function form a metric space, if and only if the graph is connected. | | The vertex set (of an undirected graph) and the distance function form a metric space, if and only if the graph is connected. |
| | | |
− | (无向图的)顶点集和距离函数构成度量空间,当且仅当图是连通的。 | + | 当且仅当图是连通的时,(无向图的)顶点集和距离函数构成度量空间。 |
| | | |
| | | |
第83行: |
第79行: |
| The eccentricity <math>\epsilon(v)</math> of a vertex <math>v</math> is the greatest distance between <math>v</math> and any other vertex; in symbols that is <math>\epsilon(v) = \max_{u \in V}d(v,u)</math>. It can be thought of as how far a node is from the node most distant from it in the graph. | | The eccentricity <math>\epsilon(v)</math> of a vertex <math>v</math> is the greatest distance between <math>v</math> and any other vertex; in symbols that is <math>\epsilon(v) = \max_{u \in V}d(v,u)</math>. It can be thought of as how far a node is from the node most distant from it in the graph. |
| | | |
− | 一个顶点的离心率是它与其他顶点之间最大的距离。它可以被认为是一个节点距离图中离它最远的节点有多远。
| + | 一个顶点的偏心率是它与其他顶点之间最大的距离。它可以被认为是一个节点距离图中离它最远的节点有多远。 |
| | | |
| | | |
第91行: |
第87行: |
| The radius <math>r</math> of a graph is the minimum eccentricity of any vertex or, in symbols, <math>r = \min_{v \in V} \epsilon(v) = \min_{v \in V}\max_{u \in V}d(v,u)</math>. | | The radius <math>r</math> of a graph is the minimum eccentricity of any vertex or, in symbols, <math>r = \min_{v \in V} \epsilon(v) = \min_{v \in V}\max_{u \in V}d(v,u)</math>. |
| | | |
− | 图的半径 < math > r </math > 是任何顶点的最小离心率,或者,在符号中,< math > r = min { v } epsilon (v) = min { v } max { u in v } d (v,u) </math > 。 | + | 图的半径<math>r</math>是任何顶点的最小偏心率,或者,在符号中,<math>r = \min_{v \in V} \epsilon(v) = \min_{v \in V}\max_{u \in V}d(v,u)</math> 。 |
| | | |
| | | |
第99行: |
第95行: |
| The diameter <math>d</math> of a graph is the maximum eccentricity of any vertex in the graph. That is, <math>d</math> is the greatest distance between any pair of vertices or, alternatively, <math>d = \max_{v \in V}\epsilon(v)</math>. To find the diameter of a graph, first find the shortest path between each pair of vertices. The greatest length of any of these paths is the diameter of the graph. | | The diameter <math>d</math> of a graph is the maximum eccentricity of any vertex in the graph. That is, <math>d</math> is the greatest distance between any pair of vertices or, alternatively, <math>d = \max_{v \in V}\epsilon(v)</math>. To find the diameter of a graph, first find the shortest path between each pair of vertices. The greatest length of any of these paths is the diameter of the graph. |
| | | |
− | 图的直径 < math > d </math > 是图中任何顶点的最大离心率。也就是说,< math > d </math > 是任何一对顶点之间最大的距离,或者,< math > d = max _ { v }/epsilon (v) </math > 。要找到图的直径,首先要找到每对顶点之间的最短路径。这些路径的最大长度是图的直径。 | + | 图的直径 <math>d</math>是图中任何顶点的最大偏心率。也就是说, <math>d</math> 是任何一对顶点之间最大的距离,或者,<math>d = \max_{v \in V}\epsilon(v)</math>。要找到图的直径,首先要找到每对顶点之间的最短路径。这些路径的最大长度是图的直径。 |
| | | |
| | | |
第107行: |
第103行: |
| A central vertex in a graph of radius <math>r</math> is one whose eccentricity is <math>r</math>—that is, a vertex that achieves the radius or, equivalently, a vertex <math>v</math> such that <math>\epsilon(v) = r</math>. | | A central vertex in a graph of radius <math>r</math> is one whose eccentricity is <math>r</math>—that is, a vertex that achieves the radius or, equivalently, a vertex <math>v</math> such that <math>\epsilon(v) = r</math>. |
| | | |
− | 半径 < math > r </math > 图中的中心顶点的离心率是 < math > r </math > ——也就是说,达到半径的顶点,或者等效于一个顶点 < math > v </math > ,这样 < math > epsilon (v) = r </math > 。 | + | 半径<math>r</math>图中的中心顶点的偏心率是 <math>r</math>&mdash,也就是说,达到半径的顶点,或者等效于一个顶点<math>v</math>,这样 <math>\epsilon(v) = r</math> 。 |
| | | |
| | | |
第115行: |
第111行: |
| A peripheral vertex in a graph of diameter <math>d</math> is one that is distance <math>d</math> from some other vertex—that is, a vertex that achieves the diameter. Formally, <math>v</math> is peripheral if <math>\epsilon(v) = d</math>. | | A peripheral vertex in a graph of diameter <math>d</math> is one that is distance <math>d</math> from some other vertex—that is, a vertex that achieves the diameter. Formally, <math>v</math> is peripheral if <math>\epsilon(v) = d</math>. |
| | | |
− | 直径 < math > d </math > 图中的边缘顶点与其他顶点之间的距离为 d < math > d </math > ,即达到直径的顶点。形式上,如果 < math > epsilon (v) = d </math > ,< math > v </math > 是次要的。 | + | 直径<math>d</math>图中的边缘顶点与其他顶点之间的距离为<math>d</math>,即达到直径的顶点。形式上,如果<math>\epsilon(v) = d</math>,<math>v</math>是次要的。 |
| | | |
| | | |
第123行: |
第119行: |
| A pseudo-peripheral vertex <math>v</math> has the property that for any vertex <math>u</math>, if <math>v</math> is as far away from <math>u</math> as possible, then <math>u</math> is as far away from <math>v</math> as possible. Formally, a vertex u is pseudo-peripheral, | | A pseudo-peripheral vertex <math>v</math> has the property that for any vertex <math>u</math>, if <math>v</math> is as far away from <math>u</math> as possible, then <math>u</math> is as far away from <math>v</math> as possible. Formally, a vertex u is pseudo-peripheral, |
| | | |
− | 一个伪周边顶点具有这样的属性: 对于任何顶点,如果 < math > u </math > ,如果 < math > v </math > 离 < math > u </math > 越远越好,那么 < math > u </math > 离 < math > 越远越好。形式上,一个顶点 u 是伪外围的, | + | 一个伪周边顶点具有这样的属性: 对于任何顶点 <math>u</math>,如果<math>v</math>离<math>u</math>越远,那么 <math>u</math>离 <math>v</math>越远。形式上,一个顶点 u 是伪外围的, |
| | | |
| if for each vertex ''v'' with <math>d(u,v) = \epsilon(u)</math> holds <math>\epsilon(u)=\epsilon(v)</math>. | | if for each vertex ''v'' with <math>d(u,v) = \epsilon(u)</math> holds <math>\epsilon(u)=\epsilon(v)</math>. |
第129行: |
第125行: |
| if for each vertex v with <math>d(u,v) = \epsilon(u)</math> holds <math>\epsilon(u)=\epsilon(v)</math>. | | if for each vertex v with <math>d(u,v) = \epsilon(u)</math> holds <math>\epsilon(u)=\epsilon(v)</math>. |
| | | |
− | 如果对于每个顶点 v 都有 < math > d (u,v) = epsilon (u) </math > 保存 < math > epsilon (u) = epsilon (v) </math > 。 | + | 如果对于每个顶点 v 都有<math>d(u,v) = \epsilon(u)</math>保持<math>\epsilon(u)=\epsilon(v)</math>。 |
| | | |
| | | |
第145行: |
第141行: |
| A graph such that for every pair of vertices there is a unique shortest path connecting them is called a geodetic graph. For example, all trees are geodetic. | | A graph such that for every pair of vertices there is a unique shortest path connecting them is called a geodetic graph. For example, all trees are geodetic. |
| | | |
− | 对于每一对顶点,有一条唯一的最短路径连接它们,这样的图称为大地图。例如,所有的树都是大地测量的。
| + | 对于每一对顶点,有一条唯一的最短路径连接它们,这样的图称为大地图。例如,所有的树都是大地图。 |
| | | |
| | | |
| | | |
− | ==Algorithm for finding pseudo-peripheral vertices== | + | ==Algorithm for finding pseudo-peripheral vertices 寻找伪周边的算法== |
| | | |
| Often peripheral [[sparse matrix]] algorithms need a starting vertex with a high eccentricity. A peripheral vertex would be perfect, but is often hard to calculate. In most circumstances a pseudo-peripheral vertex can be used. A pseudo-peripheral vertex can easily be found with the following algorithm: | | Often peripheral [[sparse matrix]] algorithms need a starting vertex with a high eccentricity. A peripheral vertex would be perfect, but is often hard to calculate. In most circumstances a pseudo-peripheral vertex can be used. A pseudo-peripheral vertex can easily be found with the following algorithm: |
第163行: |
第159行: |
| Choose a vertex <math>u</math>. | | Choose a vertex <math>u</math>. |
| | | |
− | 选择顶点 < math > u </math > 。 | + | 选择顶点<math>u</math>。 |
| | | |
| # Among all the vertices that are as far from <math>u</math> as possible, let <math>v</math> be one with minimal [[degree (graph theory)|degree]]. | | # Among all the vertices that are as far from <math>u</math> as possible, let <math>v</math> be one with minimal [[degree (graph theory)|degree]]. |
第169行: |
第165行: |
| Among all the vertices that are as far from <math>u</math> as possible, let <math>v</math> be one with minimal degree. | | Among all the vertices that are as far from <math>u</math> as possible, let <math>v</math> be one with minimal degree. |
| | | |
− | 在所有尽可能远离 < math > u </math > 的顶点中,让 < math > v </math > 是一个最小度的顶点。 | + | 在所有尽可能远离<math>u</math>的顶点中,让<math>v</math>是一个最小度的顶点。 |
| | | |
| # If <math>\epsilon(v) > \epsilon(u)</math> then set <math>u=v</math> and repeat with step 2, else <math>u</math> is a pseudo-peripheral vertex. | | # If <math>\epsilon(v) > \epsilon(u)</math> then set <math>u=v</math> and repeat with step 2, else <math>u</math> is a pseudo-peripheral vertex. |
第175行: |
第171行: |
| If <math>\epsilon(v) > \epsilon(u)</math> then set <math>u=v</math> and repeat with step 2, else <math>u</math> is a pseudo-peripheral vertex. | | If <math>\epsilon(v) > \epsilon(u)</math> then set <math>u=v</math> and repeat with step 2, else <math>u</math> is a pseudo-peripheral vertex. |
| | | |
− | 如果 < math > epsilon (v) > epsilon (u) </math > 然后设置 < math > u = v </math > 并用步骤2重复,否则 < math > u </math > 是一个伪周边顶点。 | + | 如果<math>\epsilon(v) > \epsilon(u)</math>然后设置 <math>u=v</math>并重复步骤2,否则 <math>u</math>是一个伪周边顶点。 |
| | | |
| | | |
| | | |
− | ==See also== | + | ==See also 另请参见== |
| | | |
| * [[Distance matrix]] | | * [[Distance matrix]] |
| + | 距离矩阵 |
| | | |
| * [[Resistance distance]] | | * [[Resistance distance]] |
| + | 电阻距离 |
| | | |
| * [[Betweenness centrality]] | | * [[Betweenness centrality]] |
| + | 介数中心性 |
| | | |
| * [[Centrality]] | | * [[Centrality]] |
| + | 中心性 |
| | | |
| * [[Closeness (graph theory)|Closeness]] | | * [[Closeness (graph theory)|Closeness]] |
| + | 封闭性 |
| | | |
| * [[Degree diameter problem]] for [[Graph (discrete mathematics)|graph]]s and [[digraph (mathematics)|digraph]]s | | * [[Degree diameter problem]] for [[Graph (discrete mathematics)|graph]]s and [[digraph (mathematics)|digraph]]s |
| + | 图和有向图的度数直径问题 |
| | | |
| * [[Metric graph]] | | * [[Metric graph]] |
− | | + | 指标图 |
| | | |
| | | |