更改

跳到导航 跳到搜索
删除3,949字节 、 2020年9月9日 (三) 18:25
无编辑摘要
第2行: 第2行:     
{{Probability distribution
 
{{Probability distribution
  −
{{Probability distribution
  −
  −
{概率分布
  −
  −
| name      =Pareto Type I
  −
   
  | name      =Pareto Type I
 
  | name      =Pareto Type I
  −
| name = Pareto Type i
  −
   
  | type      =density
 
  | type      =density
  −
| type      =density
  −
  −
类型 = 密度
  −
   
  | pdf_image  =[[File:Probability density function of Pareto distribution.svg|325px|Pareto Type I probability density functions for various ''α'']]<br />Pareto Type I probability density functions for various <math>\alpha</math> with <math>x_\mathrm{m} = 1.</math> As <math>\alpha \rightarrow \infty,</math> the distribution approaches <math>\delta(x - x_\mathrm{m}),</math> where <math>\delta</math> is the [[Dirac delta function]].
 
  | pdf_image  =[[File:Probability density function of Pareto distribution.svg|325px|Pareto Type I probability density functions for various ''α'']]<br />Pareto Type I probability density functions for various <math>\alpha</math> with <math>x_\mathrm{m} = 1.</math> As <math>\alpha \rightarrow \infty,</math> the distribution approaches <math>\delta(x - x_\mathrm{m}),</math> where <math>\delta</math> is the [[Dirac delta function]].
  −
| pdf_image  =Pareto Type I probability density functions for various α<br />Pareto Type I probability density functions for various \alpha with x_\mathrm{m} = 1. As \alpha \rightarrow \infty, the distribution approaches \delta(x - x_\mathrm{m}), where \delta is the Dirac delta function.
  −
  −
| pdf _ image = 各种 α < br/> Pareto i 型概率密度函数的 Pareto i 型概率密度函数。在 α 向右下方,分布趋近于 δ (x-x _ mathrm { m }) ,其中 δ 是狄拉克δ函数。
  −
   
  | cdf_image  =[[File:Cumulative distribution function of Pareto distribution.svg|325px|Pareto Type I cumulative distribution functions for various ''α'']]<br />Pareto Type I cumulative distribution functions for various <math>\alpha</math> with <math>x_\mathrm{m} = 1.</math>
 
  | cdf_image  =[[File:Cumulative distribution function of Pareto distribution.svg|325px|Pareto Type I cumulative distribution functions for various ''α'']]<br />Pareto Type I cumulative distribution functions for various <math>\alpha</math> with <math>x_\mathrm{m} = 1.</math>
  −
| cdf_image  =Pareto Type I cumulative distribution functions for various α<br />Pareto Type I cumulative distribution functions for various \alpha with x_\mathrm{m} = 1.
  −
  −
不同 α < br/> Pareto i 型累积分布函数的 Pareto i 型累积分布函数。
  −
   
  | parameters =<math>x_\mathrm{m} > 0</math> [[scale parameter|scale]] ([[real number|real]])<br /><math>\alpha > 0</math> [[shape parameter|shape]] (real)
 
  | parameters =<math>x_\mathrm{m} > 0</math> [[scale parameter|scale]] ([[real number|real]])<br /><math>\alpha > 0</math> [[shape parameter|shape]] (real)
  −
| parameters =x_\mathrm{m} > 0 scale (real)<br />\alpha > 0 shape (real)
  −
  −
0 scale (real) < br/> alpha > 0 shape (real)
  −
   
  | support    =<math>x \in [x_\mathrm{m}, \infty)</math>
 
  | support    =<math>x \in [x_\mathrm{m}, \infty)</math>
  −
| support    =x \in [x_\mathrm{m}, \infty)
  −
  −
| support = x in [ x _ mathrm { m } ,infty)
  −
   
  | pdf        =<math>\frac{\alpha x_\mathrm{m}^\alpha}{x^{\alpha+1}}</math>
 
  | pdf        =<math>\frac{\alpha x_\mathrm{m}^\alpha}{x^{\alpha+1}}</math>
  −
| pdf        =\frac{\alpha x_\mathrm{m}^\alpha}{x^{\alpha+1}}
  −
  −
1}{ x ^ { alpha + 1}}
  −
   
  | cdf        =<math>1-\left(\frac{x_\mathrm{m}}{x}\right)^\alpha</math>
 
  | cdf        =<math>1-\left(\frac{x_\mathrm{m}}{x}\right)^\alpha</math>
  −
| cdf        =1-\left(\frac{x_\mathrm{m}}{x}\right)^\alpha
  −
  −
1-left (frac { x _ mathrm { m }{ x } right) ^ alpha
  −
  −
| mean      =<math>\begin{cases}
  −
   
  | mean      =<math>\begin{cases}
 
  | mean      =<math>\begin{cases}
  −
开始{ cases }
  −
  −
    \infty & \text{for }\alpha\le 1 \\
  −
   
     \infty & \text{for }\alpha\le 1 \\
 
     \infty & \text{for }\alpha\le 1 \\
  −
1.1
  −
   
     \dfrac{\alpha x_\mathrm{m}}{\alpha-1} & \text{for }\alpha>1
 
     \dfrac{\alpha x_\mathrm{m}}{\alpha-1} & \text{for }\alpha>1
  −
    \dfrac{\alpha x_\mathrm{m}}{\alpha-1} & \text{for }\alpha>1
  −
  −
1 & text { for } alpha > 1
  −
   
   \end{cases}</math>
 
   \end{cases}</math>
  −
  \end{cases}</math>
  −
  −
结束{ cases } </math >
  −
   
  | median    =<math>x_\mathrm{m} \sqrt[\alpha]{2}</math>
 
  | median    =<math>x_\mathrm{m} \sqrt[\alpha]{2}</math>
  −
| median    =x_\mathrm{m} \sqrt[\alpha]{2}
  −
  −
中位数 = x _ mathrm { m } sqrt [ alpha ]{2}
  −
   
  | mode      =<math>x_\mathrm{m}</math>
 
  | mode      =<math>x_\mathrm{m}</math>
  −
| mode      =x_\mathrm{m}
  −
  −
2009年10月11日
  −
  −
| variance  =<math>\begin{cases}
  −
   
  | variance  =<math>\begin{cases}
 
  | variance  =<math>\begin{cases}
  −
| 方差 = < math > begin { cases }
  −
  −
    \infty & \text{for }\alpha\le 2 \\
  −
   
     \infty & \text{for }\alpha\le 2 \\
 
     \infty & \text{for }\alpha\le 2 \\
  −
2.1.1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2
  −
  −
    \dfrac{x_\mathrm{m}^2\alpha}{(\alpha-1)^2(\alpha-2)} & \text{for }\alpha>2
  −
   
     \dfrac{x_\mathrm{m}^2\alpha}{(\alpha-1)^2(\alpha-2)} & \text{for }\alpha>2
 
     \dfrac{x_\mathrm{m}^2\alpha}{(\alpha-1)^2(\alpha-2)} & \text{for }\alpha>2
  −
1) ^ 2(alpha-2)} & text { for } alpha > 2
  −
  −
  \end{cases}</math>
  −
   
   \end{cases}</math>
 
   \end{cases}</math>
  −
结束{ cases } </math >
  −
   
  | skewness  =<math>\frac{2(1+\alpha)}{\alpha-3}\sqrt{\frac{\alpha-2}{\alpha}}\text{ for }\alpha>3</math>
 
  | skewness  =<math>\frac{2(1+\alpha)}{\alpha-3}\sqrt{\frac{\alpha-2}{\alpha}}\text{ for }\alpha>3</math>
  −
| skewness  =\frac{2(1+\alpha)}{\alpha-3}\sqrt{\frac{\alpha-2}{\alpha}}\text{ for }\alpha>3
  −
  −
| skewness = frac {2(1 + alpha)}{ alpha-3} sqrt { frac { alpha-2}{ alpha }}} text { for } alpha > 3
  −
   
  | kurtosis  =<math>\frac{6(\alpha^3+\alpha^2-6\alpha-2)}{\alpha(\alpha-3)(\alpha-4)}\text{ for }\alpha>4</math>
 
  | kurtosis  =<math>\frac{6(\alpha^3+\alpha^2-6\alpha-2)}{\alpha(\alpha-3)(\alpha-4)}\text{ for }\alpha>4</math>
  −
| kurtosis  =\frac{6(\alpha^3+\alpha^2-6\alpha-2)}{\alpha(\alpha-3)(\alpha-4)}\text{ for }\alpha>4
  −
  −
| 峭度 = frac {6(alpha ^ 3 + alpha ^ 2-6 alpha-2)}{ alpha (alpha-3)(alpha-4)} text { for } alpha > 4
  −
   
  | entropy    =<math>\log\left(\left(\frac{x_\mathrm{m}}{\alpha}\right)\,e^{1+\tfrac{1}{\alpha}}\right) </math>
 
  | entropy    =<math>\log\left(\left(\frac{x_\mathrm{m}}{\alpha}\right)\,e^{1+\tfrac{1}{\alpha}}\right) </math>
  −
| entropy    =\log\left(\left(\frac{x_\mathrm{m}}{\alpha}\right)\,e^{1+\tfrac{1}{\alpha}}\right)
  −
  −
| 熵 = log left (left (left (frac { x _ mathrm { m }{ alpha }右) ,e ^ {1 + tfrac {1}{ alpha }右)
  −
   
  | mgf        =<math>\alpha(-x_\mathrm{m}t)^\alpha\Gamma(-\alpha,-x_\mathrm{m}t)\text{ for }t<0</math>
 
  | mgf        =<math>\alpha(-x_\mathrm{m}t)^\alpha\Gamma(-\alpha,-x_\mathrm{m}t)\text{ for }t<0</math>
  −
| mgf        =\alpha(-x_\mathrm{m}t)^\alpha\Gamma(-\alpha,-x_\mathrm{m}t)\text{ for }t<0
  −
  −
| mgf = alpha (- x _ mathrm { m } t) ^ alpha Gamma (- alpha,-x _ mathrm { m } t) text { for } t < 0
  −
   
  | char      =<math>\alpha(-ix_\mathrm{m}t)^\alpha\Gamma(-\alpha,-ix_\mathrm{m}t)</math>
 
  | char      =<math>\alpha(-ix_\mathrm{m}t)^\alpha\Gamma(-\alpha,-ix_\mathrm{m}t)</math>
  −
| char      =\alpha(-ix_\mathrm{m}t)^\alpha\Gamma(-\alpha,-ix_\mathrm{m}t)
  −
  −
| char = alpha (- ix _ mathrm { m } t) ^ alpha Gamma (- alpha,-ix _ mathrm { m } t)
  −
   
  | fisher    =<math>\mathcal{I}(x_\mathrm{m},\alpha) = \begin{bmatrix}
 
  | fisher    =<math>\mathcal{I}(x_\mathrm{m},\alpha) = \begin{bmatrix}
  −
| fisher    =<math>\mathcal{I}(x_\mathrm{m},\alpha) = \begin{bmatrix}
  −
  −
| fisher = < math > mathcal { i }(x _ mathrm { m } ,alpha) = begin { bmatrix }
  −
   
                   \dfrac{\alpha}{x_\mathrm{m}^2} & -\dfrac{1}{x_\mathrm{m}} \\
 
                   \dfrac{\alpha}{x_\mathrm{m}^2} & -\dfrac{1}{x_\mathrm{m}} \\
  −
                  \dfrac{\alpha}{x_\mathrm{m}^2} & -\dfrac{1}{x_\mathrm{m}} \\
  −
  −
2} &-dfrac {1}{ x mathrm { m }
  −
  −
                  -\dfrac{1}{x_\mathrm{m}} & \dfrac{1}{\alpha^2}
  −
   
                   -\dfrac{1}{x_\mathrm{m}} & \dfrac{1}{\alpha^2}
 
                   -\dfrac{1}{x_\mathrm{m}} & \dfrac{1}{\alpha^2}
  −
- dfrac {1}{ x _ mathrm { m } & dfrac {1}{ alpha ^ 2}
  −
  −
              \end{bmatrix}</math>
  −
   
               \end{bmatrix}</math>
 
               \end{bmatrix}</math>
  −
结束{ bmatrix } </math >
  −
  −
  −
  −
              Right: <math>\mathcal{I}(x_\mathrm{m},\alpha) = \begin{bmatrix}
      
               Right: <math>\mathcal{I}(x_\mathrm{m},\alpha) = \begin{bmatrix}
 
               Right: <math>\mathcal{I}(x_\mathrm{m},\alpha) = \begin{bmatrix}
  −
右: < math > mathcal { i }(x _ mathrm { m } ,alpha) = begin { bmatrix }
  −
  −
                  \dfrac{\alpha^2}{x_\mathrm{m}^2} & 0 \\
  −
   
                   \dfrac{\alpha^2}{x_\mathrm{m}^2} & 0 \\
 
                   \dfrac{\alpha^2}{x_\mathrm{m}^2} & 0 \\
  −
2} & 0
  −
  −
                  0 & \dfrac{1}{\alpha^2}
  −
   
                   0 & \dfrac{1}{\alpha^2}
 
                   0 & \dfrac{1}{\alpha^2}
  −
0 & dfrac {1}{ alpha ^ 2}
  −
  −
              \end{bmatrix}</math>
  −
   
               \end{bmatrix}</math>
 
               \end{bmatrix}</math>
  −
结束{ bmatrix } </math >
  −
  −
}}
  −
   
}}
 
}}
  −
}}
  −
       
575

个编辑

导航菜单