| [[Cancer systems biology]] is an example of the systems biology approach, which can be distinguished by the specific object of study ([[tumorigenesis]] and [[Cancer treatment|treatment of cancer]]). It works with the specific data (patient samples, high-throughput data with particular attention to characterizing [[Cancer genome sequencing|cancer genome]] in patient tumour samples) and tools (immortalized cancer [[cell lines]], [[Animal testing on rodents|mouse models]] of tumorigenesis, [[xenograft]] models, [[high-throughput sequencing]] methods, siRNA-based gene knocking down [[high-throughput screening]]s, computational modeling of the consequences of somatic [[mutations]] and [[genome instability]]).<ref name="barillot13">{{cite book|last1=Barillot|first1 =Emmanuel |last2=Calzone|first2=Laurence|last3=Hupe|first3=Philippe|last4=Vert|first4 =Jean-Philippe|last5=Zinovyev|first5=Andrei|title=Computational Systems Biology of Cancer|year=2012|publisher=Chapman & Hall/CRCMathematical & Computational Biology|isbn=978-1439831441|page=461}}</ref> The long-term objective of the systems biology of cancer is ability to better diagnose cancer, classify it and better predict the outcome of a suggested treatment, which is a basis for [[Personalized medicine#Cancer management|personalized cancer medicine]] and [[Virtual Physiological Human|virtual cancer patient]] in more distant prospective. Significant efforts in computational systems biology of cancer have been made in creating realistic multi-scale ''[[in silico]]'' models of various tumours.<ref name="byrne2010"> | | [[Cancer systems biology]] is an example of the systems biology approach, which can be distinguished by the specific object of study ([[tumorigenesis]] and [[Cancer treatment|treatment of cancer]]). It works with the specific data (patient samples, high-throughput data with particular attention to characterizing [[Cancer genome sequencing|cancer genome]] in patient tumour samples) and tools (immortalized cancer [[cell lines]], [[Animal testing on rodents|mouse models]] of tumorigenesis, [[xenograft]] models, [[high-throughput sequencing]] methods, siRNA-based gene knocking down [[high-throughput screening]]s, computational modeling of the consequences of somatic [[mutations]] and [[genome instability]]).<ref name="barillot13">{{cite book|last1=Barillot|first1 =Emmanuel |last2=Calzone|first2=Laurence|last3=Hupe|first3=Philippe|last4=Vert|first4 =Jean-Philippe|last5=Zinovyev|first5=Andrei|title=Computational Systems Biology of Cancer|year=2012|publisher=Chapman & Hall/CRCMathematical & Computational Biology|isbn=978-1439831441|page=461}}</ref> The long-term objective of the systems biology of cancer is ability to better diagnose cancer, classify it and better predict the outcome of a suggested treatment, which is a basis for [[Personalized medicine#Cancer management|personalized cancer medicine]] and [[Virtual Physiological Human|virtual cancer patient]] in more distant prospective. Significant efforts in computational systems biology of cancer have been made in creating realistic multi-scale ''[[in silico]]'' models of various tumours.<ref name="byrne2010"> |
− | Cancer systems biology is an example of the systems biology approach, which can be distinguished by the specific object of study (tumorigenesis and treatment of cancer). It works with the specific data (patient samples, high-throughput data with particular attention to characterizing cancer genome in patient tumour samples) and tools (immortalized cancer cell lines, mouse models of tumorigenesis, xenograft models, high-throughput sequencing methods, siRNA-based gene knocking down high-throughput screenings, computational modeling of the consequences of somatic mutations and genome instability). The long-term objective of the systems biology of cancer is ability to better diagnose cancer, classify it and better predict the outcome of a suggested treatment, which is a basis for personalized cancer medicine and virtual cancer patient in more distant prospective. Significant efforts in computational systems biology of cancer have been made in creating realistic multi-scale in silico models of various tumours.<ref name="byrne2010"> | + | Cancer systems biology is an example of the systems biology approach, which can be distinguished by the specific object of study (tumorigenesis and treatment of cancer). It works with the specific data (patient samples, high-throughput data with particular attention to characterizing cancer genome in patient tumour samples) and tools (immortalized cancer cell lines, mouse models of tumorigenesis, xenograft models, high-throughput sequencing methods, siRNA-based gene knocking down high-throughput screenings, computational modeling of the consequences of somatic mutations and genome instability). The long-term objective of the systems biology of cancer is ability to better diagnose cancer, classify it and better predict the outcome of a suggested treatment, which is a basis for personalized cancer medicine and virtual cancer patient in more distant prospective. Significant efforts in computational systems biology of cancer have been made in creating realistic multi-scale in silico models of various tumours. |