更改

跳到导航 跳到搜索
添加237字节 、 2020年9月10日 (四) 23:46
无编辑摘要
第235行: 第235行:     
<font color="#FF8000">癌症系统生物学 Cancer systems biology</font>是系统生物学研究的一个例子,它可以通过特定的研究对象(肿瘤发生和癌症治疗)来区分。它使用特定的数据(患者样本、高通量数据,特别注意在患者肿瘤样本中描述癌症基因组)和工具(永生化癌细胞系、肿瘤发生的小鼠模型、异种移植模型、高通量测序方法、基于siRNA的基因敲除高通量筛选、体细胞突变后果的计算模型和基因不稳定性)。癌症系统生物学的长期目标是能够更好地诊断癌症,对癌症进行分类,并更好地预测建议的治疗结果,这是个性化癌症医学和虚拟癌症患者在更远的前景的基础。在癌症的计算系统生物学方面已经做出了重大的努力,在各种肿瘤的计算机模型中创造了真实的多尺度。
 
<font color="#FF8000">癌症系统生物学 Cancer systems biology</font>是系统生物学研究的一个例子,它可以通过特定的研究对象(肿瘤发生和癌症治疗)来区分。它使用特定的数据(患者样本、高通量数据,特别注意在患者肿瘤样本中描述癌症基因组)和工具(永生化癌细胞系、肿瘤发生的小鼠模型、异种移植模型、高通量测序方法、基于siRNA的基因敲除高通量筛选、体细胞突变后果的计算模型和基因不稳定性)。癌症系统生物学的长期目标是能够更好地诊断癌症,对癌症进行分类,并更好地预测建议的治疗结果,这是个性化癌症医学和虚拟癌症患者在更远的前景的基础。在癌症的计算系统生物学方面已经做出了重大的努力,在各种肿瘤的计算机模型中创造了真实的多尺度。
  −
  --[[用户:CecileLi|CecileLi]]([[用户讨论:CecileLi|讨论]])  【审校】此处编辑视图中有去标注与翻译,但阅读视图中处理后仍然无法显示。
      
{{cite journal|last1=Byrne|first1=Helen M. |authorlink1=Helen Byrne
 
{{cite journal|last1=Byrne|first1=Helen M. |authorlink1=Helen Byrne
第250行: 第248行:  
| year = 2010 | journal = Nature Reviews Cancer | volume = 10 | issue = 3 | pages = 221-230 | pmd = 20179714 | doi = 10.1038/nrc2808 | title = 通过数学解剖癌症: 从细胞到动物模型} </ref >  
 
| year = 2010 | journal = Nature Reviews Cancer | volume = 10 | issue = 3 | pages = 221-230 | pmd = 20179714 | doi = 10.1038/nrc2808 | title = 通过数学解剖癌症: 从细胞到动物模型} </ref >  
   −
 
+
  --[[用户:CecileLi|CecileLi]]([[用户讨论:CecileLi|讨论]])  【审校】此处编辑视图中有去标注与翻译,但阅读视图中处理后仍然无法显示。
    
The investigations are frequently combined with large-scale perturbation methods, including gene-based ([[RNAi]], mis-expression of [[wild type]] and mutant genes) and chemical approaches using small molecule libraries.{{Citation needed|date=May 2009}} [[Robot]]s and automated sensors enable such large-scale experimentation and data acquisition. These technologies are still emerging and many face problems that the larger the quantity of data produced, the lower the quality.{{Citation needed|date=May 2009}} A wide variety of quantitative scientists ([[computational biology|computational biologists]], [[statistician]]s, [[mathematician]]s, [[computer scientist]]s and [[physicist]]s) are working to improve the quality of these approaches and to create, refine, and retest the models to accurately reflect observations.
 
The investigations are frequently combined with large-scale perturbation methods, including gene-based ([[RNAi]], mis-expression of [[wild type]] and mutant genes) and chemical approaches using small molecule libraries.{{Citation needed|date=May 2009}} [[Robot]]s and automated sensors enable such large-scale experimentation and data acquisition. These technologies are still emerging and many face problems that the larger the quantity of data produced, the lower the quality.{{Citation needed|date=May 2009}} A wide variety of quantitative scientists ([[computational biology|computational biologists]], [[statistician]]s, [[mathematician]]s, [[computer scientist]]s and [[physicist]]s) are working to improve the quality of these approaches and to create, refine, and retest the models to accurately reflect observations.
第265行: 第263行:     
系统生物学方法经常涉及机制模型的发展,比如从动态系统的基本构件的定量特性重建动态系统。例如,一个细胞网络可以进行数学建模,使用的方法来自化学动力学和控制理论。由于细胞网络中参数、变量和约束的数量庞大,经常使用数值和计算技术(例如流平衡分析)。
 
系统生物学方法经常涉及机制模型的发展,比如从动态系统的基本构件的定量特性重建动态系统。例如,一个细胞网络可以进行数学建模,使用的方法来自化学动力学和控制理论。由于细胞网络中参数、变量和约束的数量庞大,经常使用数值和计算技术(例如流平衡分析)。
 +
 +
  --[[用户:CecileLi|CecileLi]]([[用户讨论:CecileLi|讨论]])  【审校】“经常使用数值和计算技术(例如流平衡分析)。”一句改为“系统生物学经常使用数值和计算技术(例如流平衡分析)。”
    
== Bioinformatics and data analysis 生物信息学和数据分析==
 
== Bioinformatics and data analysis 生物信息学和数据分析==
526

个编辑

导航菜单