| Data mining is the process of discovering patterns in large data sets involving methods at the intersection of machine learning, statistics, and database systems. Data mining is the analysis step of the "knowledge discovery in databases" process or KDD. Aside from the raw analysis step, it also involves database and data management aspects, data pre-processing, model and inference considerations, interestingness metrics, complexity considerations, post-processing of discovered structures, visualization, and online updating. | | Data mining is the process of discovering patterns in large data sets involving methods at the intersection of machine learning, statistics, and database systems. Data mining is the analysis step of the "knowledge discovery in databases" process or KDD. Aside from the raw analysis step, it also involves database and data management aspects, data pre-processing, model and inference considerations, interestingness metrics, complexity considerations, post-processing of discovered structures, visualization, and online updating. |
− | '''<font color="#ff8000">数据挖掘 Data Mining </font>'''是在大型数据集中发现模式的过程,是一种涉及到机器学习、统计学和数据库系统综合使用的方法。数据挖掘是指“在数据库中发现知识(knowledge discovery in databases,KDD)”的过程的分析步骤。除了传统的分析步骤,它还涉及数据库和数据管理方面,包括数据预处理、模型和推理考虑、兴趣度量、复杂性考虑、发现结构的后处理、可视化和在线更新等内容。 | + | '''<font color="#ff8000">数据挖掘 Data Mining </font>'''是在大型数据集中发现模式的过程,是一种涉及到机器学习、统计学和数据库系统综合使用的方法。数据挖掘是指“在数据库中发现知识(knowledge discovery in databases,KDD)”过程中的分析步骤。除了传统的分析步骤,它还涉及数据库和数据管理方面,包括数据预处理、模型和推理考虑、兴趣度量、复杂性考虑、发现结构的后处理、可视化和在线更新等内容。 |