更改

跳到导航 跳到搜索
删除39字节 、 2020年9月12日 (六) 09:33
第585行: 第585行:  
根据'''<font color="#ff8000">经验法则 Rule-of-thumb</font>''',我们可以假设任意给定函数中的最高阶项主导其增长率,从而定义其运行时顺序。在这个例子中,最高阶项为n<sup>2</sup>,因此可以得出f(n) = O(n<sup>2</sup>)。证明如下:
 
根据'''<font color="#ff8000">经验法则 Rule-of-thumb</font>''',我们可以假设任意给定函数中的最高阶项主导其增长率,从而定义其运行时顺序。在这个例子中,最高阶项为n<sup>2</sup>,因此可以得出f(n) = O(n<sup>2</sup>)。证明如下:
   −
{{quote|Prove that <math>\left[ \frac{1}{2} (n^2 + n) \right] T_6 + \left[ \frac{1}{2} (n^2 + 3n) \right] T_5 + (n + 1)T_4 + T_1 + T_2 + T_3 + T_7 \le cn^2,\ n \ge n_0</math>
  −
  −
<br /><br />
      +
Prove that <math>\left[ \frac{1}{2} (n^2 + n) \right] T_6 + \left[ \frac{1}{2} (n^2 + 3n) \right] T_5 + (n + 1)T_4 + T_1 + T_2 + T_3 + T_7 \le cn^2,\ n \ge n_0</math>
 +
<br /><br />
 
<math>\begin{align}
 
<math>\begin{align}
   
&\left[ \frac{1}{2} (n^2 + n) \right] T_6 + \left[ \frac{1}{2} (n^2 + 3n) \right] T_5 + (n + 1)T_4 + T_1 + T_2 + T_3 + T_7\\
 
&\left[ \frac{1}{2} (n^2 + n) \right] T_6 + \left[ \frac{1}{2} (n^2 + 3n) \right] T_5 + (n + 1)T_4 + T_1 + T_2 + T_3 + T_7\\
   
\le &( n^2 + n )T_6 + ( n^2 + 3n )T_5 + (n + 1)T_4 + T_1 + T_2 + T_3 + T_7 \ (\text{for } n \ge 0 )
 
\le &( n^2 + n )T_6 + ( n^2 + 3n )T_5 + (n + 1)T_4 + T_1 + T_2 + T_3 + T_7 \ (\text{for } n \ge 0 )
   
\end{align}</math>
 
\end{align}</math>
   
<br /><br />
 
<br /><br />
  −
   
Let ''k'' be a constant greater than or equal to [''T''<sub>1</sub>..''T''<sub>7</sub>]
 
Let ''k'' be a constant greater than or equal to [''T''<sub>1</sub>..''T''<sub>7</sub>]
 
+
<br /><br />
<br /><br />  
  −
 
   
<math>\begin{align}
 
<math>\begin{align}
   
&T_6( n^2 + n ) + T_5( n^2 + 3n ) + (n + 1)T_4 + T_1 + T_2 + T_3 + T_7 \le k( n^2 + n ) + k( n^2 + 3n ) + kn + 5k\\
 
&T_6( n^2 + n ) + T_5( n^2 + 3n ) + (n + 1)T_4 + T_1 + T_2 + T_3 + T_7 \le k( n^2 + n ) + k( n^2 + 3n ) + kn + 5k\\
   
= &2kn^2 + 5kn + 5k \le 2kn^2 + 5kn^2 + 5kn^2 \ (\text{for } n \ge 1) = 12kn^2
 
= &2kn^2 + 5kn + 5k \le 2kn^2 + 5kn^2 + 5kn^2 \ (\text{for } n \ge 1) = 12kn^2
   
\end{align}</math>
 
\end{align}</math>
 
+
<br /><br />
<br /><br />  
  −
 
   
Therefore <math>\left[ \frac{1}{2} (n^2 + n) \right] T_6 + \left[ \frac{1}{2} (n^2 + 3n) \right] T_5 + (n + 1)T_4 + T_1 + T_2 + T_3 + T_7 \le cn^2, n \ge n_0 \text{ for } c = 12k, n_0 = 1</math>
 
Therefore <math>\left[ \frac{1}{2} (n^2 + n) \right] T_6 + \left[ \frac{1}{2} (n^2 + 3n) \right] T_5 + (n + 1)T_4 + T_1 + T_2 + T_3 + T_7 \le cn^2, n \ge n_0 \text{ for } c = 12k, n_0 = 1</math>
   −
}}
+
证明:<math>\left[ \frac{1}{2} (n^2 + n) \right] T_6 + \left[ \frac{1}{2} (n^2 + 3n) \right] T_5 + (n + 1)T_4 + T_1 + T_2 + T_3 + T_7 \le cn^2,\ n \ge n_0</math>
 
  −
 
  −
Prove that <math>\left[ \frac{1}{2} (n^2 + n) \right] T_6 + \left[ \frac{1}{2} (n^2 + 3n) \right] T_5 + (n + 1)T_4 + T_1 + T_2 + T_3 + T_7 \le cn^2,\ n \ge n_0</math>
   
<br /><br />
 
<br /><br />
 
<math>\begin{align}
 
<math>\begin{align}
第626行: 第609行:  
\end{align}</math>
 
\end{align}</math>
 
<br /><br />
 
<br /><br />
Let ''k'' be a constant greater than or equal to [''T''<sub>1</sub>..''T''<sub>7</sub>]
+
''k''为一个大于或等于[''T''<sub>1</sub>..''T''<sub>7</sub>]的常数:
 
<br /><br />
 
<br /><br />
 
<math>\begin{align}
 
<math>\begin{align}
第634行: 第617行:  
<br /><br />
 
<br /><br />
 
Therefore <math>\left[ \frac{1}{2} (n^2 + n) \right] T_6 + \left[ \frac{1}{2} (n^2 + 3n) \right] T_5 + (n + 1)T_4 + T_1 + T_2 + T_3 + T_7 \le cn^2, n \ge n_0 \text{ for } c = 12k, n_0 = 1</math>
 
Therefore <math>\left[ \frac{1}{2} (n^2 + n) \right] T_6 + \left[ \frac{1}{2} (n^2 + 3n) \right] T_5 + (n + 1)T_4 + T_1 + T_2 + T_3 + T_7 \le cn^2, n \ge n_0 \text{ for } c = 12k, n_0 = 1</math>
  −
       
463

个编辑

导航菜单