更改

跳到导航 跳到搜索
添加223字节 、 2020年9月16日 (三) 16:04
无编辑摘要
第23行: 第23行:  
Combinatorial optimization <!-- synonymous or subfield?: discrete optimization--> is a topic that consists of finding an optimal object from a finite set of objects. In many such problems, exhaustive search is not tractable. It operates on the domain of those optimization problems in which the set of feasible solutions is discrete or can be reduced to discrete, and in which the goal is to find the best solution.  Typical problems are the travelling salesman problem ("TSP"), the minimum spanning tree problem ("MST"), and the knapsack problem.
 
Combinatorial optimization <!-- synonymous or subfield?: discrete optimization--> is a topic that consists of finding an optimal object from a finite set of objects. In many such problems, exhaustive search is not tractable. It operates on the domain of those optimization problems in which the set of feasible solutions is discrete or can be reduced to discrete, and in which the goal is to find the best solution.  Typical problems are the travelling salesman problem ("TSP"), the minimum spanning tree problem ("MST"), and the knapsack problem.
   −
组合优化 < ! -- 同义字段还是子字段?: 离散优化-- > 是一个主题,包括从一个有限的对象集合中寻找一个最佳对象。在许多这样的问题中,穷举搜索是不易处理的。它是在可行解集是离散的或可以化为离散的优化问题的域上进行运算的,其目标是找到最优解。典型的问题是旅行推销员问题问题(“ TSP”)、最小生成树问题(“ MST”)和背包问题问题。
+
组合优化 < ! -- 同义词还是子域?: '''<font color="#FF8000">离散优化 Discrete Optimization </font>'''-- > 是一个主题,包括从一个有限的对象集合中寻找一个最佳对象。在许多这样的问题中,穷举搜索是不易处理的。它是在可行解集是离散的或可以化为离散的优化问题的域上进行运算的,其目标是找到最优解。典型的问题是'''<font color="#FF8000">旅行推销员问题 Traveling Salesman Problem </font>'''(“ TSP”)、最小生成树问题(“ MST”)和'''<font color="#FF8000">背包问题 Knapsack Problem </font>'''。
      第31行: 第31行:  
Some research literature considers discrete optimization to consist of integer programming together with combinatorial optimization (which in turn is composed of optimization problems dealing with graph structures) although all of these topics have closely intertwined research literature. It often involves determining the way to efficiently allocate resources used to find solutions to mathematical problems.
 
Some research literature considers discrete optimization to consist of integer programming together with combinatorial optimization (which in turn is composed of optimization problems dealing with graph structures) although all of these topics have closely intertwined research literature. It often involves determining the way to efficiently allocate resources used to find solutions to mathematical problems.
   −
一些研究文献认为离散优化是由整数规划和组合优化组成的,尽管所有这些主题的研究文献都紧密地交织在一起。它通常涉及决定如何有效地分配用于寻找数学问题解决方案的资源。
+
一些研究文献认为离散优化是由'''<font color="#FF8000">整数规划 Integer Programming </font>'''和组合优化组成的,尽管所有这些主题的研究文献都紧密地交织在一起。它通常涉及决定如何有效地分配用于寻找数学问题解决方案的资源。
          
==Applications==
 
==Applications==
 +
应用<br>
    
Applications for combinatorial optimization include, but are not limited to:
 
Applications for combinatorial optimization include, but are not limited to:
第41行: 第42行:  
Applications for combinatorial optimization include, but are not limited to:
 
Applications for combinatorial optimization include, but are not limited to:
   −
组合优化的申请包括但不限于:
+
组合优化的应用包括但不限于:
     
274

个编辑

导航菜单