更改

跳到导航 跳到搜索
添加62字节 、 2020年9月16日 (三) 16:54
第157行: 第157行:     
== NP optimization problem ==
 
== NP optimization problem ==
 +
'''<font color="#FF8000">NP优化问题 NP Optimization Problem </font>'''<br>
    
An ''NP-optimization problem'' (NPO) is a combinatorial optimization problem with the following additional conditions.<ref name="Hromkovic02">{{citation|last1=Hromkovic|first1=Juraj|title=Algorithmics for Hard Problems|year=2002|series=Texts in Theoretical Computer Science|edition=2nd|publisher=Springer|isbn=978-3-540-44134-2}}</ref> Note that the below referred [[Polynomial|polynomials]] are functions of the size of the respective functions' inputs, not the size of some implicit set of input instances.
 
An ''NP-optimization problem'' (NPO) is a combinatorial optimization problem with the following additional conditions.<ref name="Hromkovic02">{{citation|last1=Hromkovic|first1=Juraj|title=Algorithmics for Hard Problems|year=2002|series=Texts in Theoretical Computer Science|edition=2nd|publisher=Springer|isbn=978-3-540-44134-2}}</ref> Note that the below referred [[Polynomial|polynomials]] are functions of the size of the respective functions' inputs, not the size of some implicit set of input instances.
第162行: 第163行:  
An NP-optimization problem (NPO) is a combinatorial optimization problem with the following additional conditions. Note that the below referred polynomials are functions of the size of the respective functions' inputs, not the size of some implicit set of input instances.
 
An NP-optimization problem (NPO) is a combinatorial optimization problem with the following additional conditions. Note that the below referred polynomials are functions of the size of the respective functions' inputs, not the size of some implicit set of input instances.
   −
一个 np 优化问题(NPO)是一个带有以下附加条件的组合优化优化问题。请注意,下面提到的多项式是各个函数的输入大小的函数,而不是某些隐式输入实例集的大小。
+
NP优化问题(NPO)是一个具有以下附加条件的组合优化问题。注意,下面提到的多项式是相应函数输入大小的函数,而不是某些隐式输入实例集的大小。
      第226行: 第227行:  
<br />
 
<br />
   −
< br/>  
+
< br/>
    
==Specific problems==
 
==Specific problems==
274

个编辑

导航菜单