| Let {{nowrap|1=''G'' = (''V'', ''E'', ''ϕ'')}} be a directed graph. A finite directed walk is a sequence of edges for which there is a sequence of vertices such that for . is the vertex sequence of the directed walk. An infinite directed walk is a sequence of edges of the same type described here, but with no first or last vertex, and a semi-infinite directed walk (or ray) has a first vertex but no last vertex. | | Let {{nowrap|1=''G'' = (''V'', ''E'', ''ϕ'')}} be a directed graph. A finite directed walk is a sequence of edges for which there is a sequence of vertices such that for . is the vertex sequence of the directed walk. An infinite directed walk is a sequence of edges of the same type described here, but with no first or last vertex, and a semi-infinite directed walk (or ray) has a first vertex but no last vertex. |
− | 一个有向图{{nowrap|1=''G'' = (''V'', ''E'', ''ϕ'')}}。有限有向步道是一系列的边 {{nowrap|(''e''<sub>1</sub>, ''e''<sub>2</sub>, …, ''e''<sub>''n'' − 1</sub>)}},对于这些边,存在一系列的顶点 {{nowrap|(''v''<sub>1</sub>, ''v''<sub>2</sub>, …, ''v''<sub>''n''</sub>)}}。{{nowrap|1=''ϕ''(''e''<sub>''i''</sub>) = (''v''<sub>''i''</sub>, ''v''<sub>''i'' + 1</sub>)}}对于{{nowrap|1=''i'' = 1, 2, …, ''n'' − 1}}. {{nowrap|(''v''<sub>1</sub>, ''v''<sub>2</sub>, …, ''v''<sub>''n''</sub>)}}是有向步道的顶点序列。无限有向步道是一个边序列,其类型与本文描述的相同,但没有第一个顶点或最后一个顶点,而半无限有向步道(或射线)有第一个顶点,但没有最后一个顶点。
| + | 以一个有向图{{nowrap|1=''G'' = (''V'', ''E'', ''ϕ'')}}为例。有限有向步道是一系列的边 {{nowrap|(''e''<sub>1</sub>, ''e''<sub>2</sub>, …, ''e''<sub>''n'' − 1</sub>)}},对于这些边,存在一系列的顶点 {{nowrap|(''v''<sub>1</sub>, ''v''<sub>2</sub>, …, ''v''<sub>''n''</sub>)}}。{{nowrap|1=''ϕ''(''e''<sub>''i''</sub>) = (''v''<sub>''i''</sub>, ''v''<sub>''i'' + 1</sub>)}}对于{{nowrap|1=''i'' = 1, 2, …, ''n'' − 1}}. {{nowrap|(''v''<sub>1</sub>, ''v''<sub>2</sub>, …, ''v''<sub>''n''</sub>)}}是有向步道的顶点序列。无限有向步道是一个边序列,其类型与本文描述的相同,但没有第一个顶点或最后一个顶点,而半无限有向步道(或射线)有第一个顶点,但没有最后一个顶点。 |