更改

跳到导航 跳到搜索
添加1,283字节 、 2020年9月20日 (日) 11:15
无编辑摘要
第60行: 第60行:  
[[File:Dice Distribution (bar).svg|thumb|250px|right|
 
[[File:Dice Distribution (bar).svg|thumb|250px|right|
 
图1:The [[probability mass function]] (pmf) ''p''(''S'') specifies the probability distribution for the sum ''S'' of counts from two [[dice]].  For example, the figure shows that ''p''(11) = 2/36 = 1/18.  The pmf allows the computation of probabilities of events such as ''P''(''S'' > 9) = 1/12 + 1/18 + 1/36 = 1/6, and all other probabilities in the distribution.
 
图1:The [[probability mass function]] (pmf) ''p''(''S'') specifies the probability distribution for the sum ''S'' of counts from two [[dice]].  For example, the figure shows that ''p''(11) = 2/36 = 1/18.  The pmf allows the computation of probabilities of events such as ''P''(''S'' > 9) = 1/12 + 1/18 + 1/36 = 1/6, and all other probabilities in the distribution.
概率质量函数(pmf) p(s)指定两个骰子计数总和s的概率分布。例如,图中显示 p (11) = 2/36 = 1/18。Pmf 允许计算事件的概率,如 p (s > 9) = 1/12 + 1/18 + 1/36 = 1/6,以及分布中的所有其他概率。
      
The [[probability mass function (pmf) p(S) specifies the probability distribution for the sum S of counts from two dice.  For example, the figure shows that p(11) = 2/36 = 1/18.  The pmf allows the computation of probabilities of events such as P(S > 9) = 1/12 + 1/18 + 1/36 = 1/6, and all other probabilities in the distribution.]]
 
The [[probability mass function (pmf) p(S) specifies the probability distribution for the sum S of counts from two dice.  For example, the figure shows that p(11) = 2/36 = 1/18.  The pmf allows the computation of probabilities of events such as P(S > 9) = 1/12 + 1/18 + 1/36 = 1/6, and all other probabilities in the distribution.]]
    +
概率质量函数(pmf) p(s)指定两个骰子计数总和s的概率分布。例如,图中显示 p (11) = 2/36 = 1/18。Pmf 允许计算事件的概率,如 p (s > 9) = 1/12 + 1/18 + 1/36 = 1/6,以及分布中的所有其他概率。
    +
  --[[用户:普天星相|普天星相]]([[用户讨论:普天星相|讨论]])  【审校】“概率质量函数(pmf) p(s)指定两个骰子计数总和s的概率分布”一句中“指定”改为“列出了”。 
 +
  --[[用户:普天星相|普天星相]]([[用户讨论:普天星相|讨论]])  【审校】“Pmf 允许计算事件的概率”一句中“允许”改为“可用于”。
      第75行: 第77行:  
<math>p(2) + p(4) + p(6) = 1/6+1/6+1/6=1/2.</math>
 
<math>p(2) + p(4) + p(6) = 1/6+1/6+1/6=1/2.</math>
   −
 
+
  --[[用户:普天星相|普天星相]]([[用户讨论:普天星相|讨论]])  【审校】“6个值中的每一个的概率为1/6”一句中“6个值”改为“1-6这六个值”。
    
In contrast, when a random variable takes values from a continuum then typically, any individual outcome has probability zero and only events that include infinitely many outcomes, such as intervals, can have positive probability. For example, the probability that a given object weighs ''exactly'' 500&nbsp;g is zero, because the probability of measuring exactly 500&nbsp;g tends to zero as the accuracy of our measuring instruments increases. Nevertheless, in quality control one might demand that the probability of a "500&nbsp;g" package containing between 490&nbsp;g and 510&nbsp;g should be no less than 98%, and this demand is less sensitive to the accuracy of measurement instruments.
 
In contrast, when a random variable takes values from a continuum then typically, any individual outcome has probability zero and only events that include infinitely many outcomes, such as intervals, can have positive probability. For example, the probability that a given object weighs ''exactly'' 500&nbsp;g is zero, because the probability of measuring exactly 500&nbsp;g tends to zero as the accuracy of our measuring instruments increases. Nevertheless, in quality control one might demand that the probability of a "500&nbsp;g" package containing between 490&nbsp;g and 510&nbsp;g should be no less than 98%, and this demand is less sensitive to the accuracy of measurement instruments.
第83行: 第85行:  
相比之下,当一个随机变量从一个连续体中取值时,那么通常情况下,任何单个结果的概率都为零,只有包含无限多个结果的事件,例如间隔,才有正的概率。例如,一个给定的物体重量正好是500克的概率为零,因为随着我们测量仪器精度的提高,正好测量500克的概率趋向于零。然而,在质量控制方面,人们可能会要求包装在490克至510克之间的“500克”包装的可能性不低于98% ,而这一要求对测量仪器的准确性不太敏感。
 
相比之下,当一个随机变量从一个连续体中取值时,那么通常情况下,任何单个结果的概率都为零,只有包含无限多个结果的事件,例如间隔,才有正的概率。例如,一个给定的物体重量正好是500克的概率为零,因为随着我们测量仪器精度的提高,正好测量500克的概率趋向于零。然而,在质量控制方面,人们可能会要求包装在490克至510克之间的“500克”包装的可能性不低于98% ,而这一要求对测量仪器的准确性不太敏感。
   −
 
+
  --[[用户:普天星相|普天星相]]([[用户讨论:普天星相|讨论]])  【审校】“那么通常情况下,任何单个结果的概率都为零,只有包含无限多个结果的事件,例如间隔,才有正的概率”一句改为“通常情况下,任何单个结果的概率都为零,只有包含无限多个结果的事件(例如区间)才有正的概率”。
 +
  --[[用户:普天星相|普天星相]]([[用户讨论:普天星相|讨论]])  【审校】“人们可能会要求包装在490克至510克之间的“500克”包装的可能性不低于98%”一句改为“人们可能会要求介于490克至510克之间的“500克”包装出现的概率不低于98%”。
    
Continuous probability distributions can be described in several ways. The [[probability density function]] describes the [[infinitesimal]] probability of any given value, and the probability that the outcome lies in a given interval can be computed by [[Integration (mathematics)|integrating]] the probability density function over that interval. The probability that the possible values lie in some fixed interval can be related to the way sums converge to an integral; therefore, continuous probability is based on the definition of an integral.  
 
Continuous probability distributions can be described in several ways. The [[probability density function]] describes the [[infinitesimal]] probability of any given value, and the probability that the outcome lies in a given interval can be computed by [[Integration (mathematics)|integrating]] the probability density function over that interval. The probability that the possible values lie in some fixed interval can be related to the way sums converge to an integral; therefore, continuous probability is based on the definition of an integral.  
30

个编辑

导航菜单