更改

跳到导航 跳到搜索
添加12,365字节 、 2020年9月26日 (六) 19:07
第35行: 第35行:       −
==Introduction==
+
==Introduction简介==
    
When interpreted as time, if the index set of a stochastic process has a finite or countable number of elements, such as a finite set of numbers, the set of integers, or the natural numbers, then the stochastic process is said to be in discrete time. If the index set is some interval of the real line, then time is said to be continuous. The two types of stochastic processes are respectively referred to as discrete-time and continuous-time stochastic processes. Discrete-time stochastic processes are considered easier to study because continuous-time processes require more advanced mathematical techniques and knowledge, particularly due to the index set being uncountable. If the index set is the integers, or some subset of them, then the stochastic process can also be called a random sequence. In his work on probability Ars Conjectandi, originally published in Latin in 1713, Jakob Bernoulli used the phrase "Ars Conjectandi sive Stochastice", which has been translated to "the art of conjecturing or stochastics". This phrase was used, with reference to Bernoulli, by Ladislaus Bortkiewicz who in 1917 wrote in German the word stochastik with a sense meaning random. The term stochastic process first appeared in English in a 1934 paper by Joseph Doob. though the German term had been used earlier, for example, by Andrei Kolmogorov in 1931.
 
When interpreted as time, if the index set of a stochastic process has a finite or countable number of elements, such as a finite set of numbers, the set of integers, or the natural numbers, then the stochastic process is said to be in discrete time. If the index set is some interval of the real line, then time is said to be continuous. The two types of stochastic processes are respectively referred to as discrete-time and continuous-time stochastic processes. Discrete-time stochastic processes are considered easier to study because continuous-time processes require more advanced mathematical techniques and knowledge, particularly due to the index set being uncountable. If the index set is the integers, or some subset of them, then the stochastic process can also be called a random sequence. In his work on probability Ars Conjectandi, originally published in Latin in 1713, Jakob Bernoulli used the phrase "Ars Conjectandi sive Stochastice", which has been translated to "the art of conjecturing or stochastics". This phrase was used, with reference to Bernoulli, by Ladislaus Bortkiewicz who in 1917 wrote in German the word stochastik with a sense meaning random. The term stochastic process first appeared in English in a 1934 paper by Joseph Doob. though the German term had been used earlier, for example, by Andrei Kolmogorov in 1931.
第43行: 第43行:  
A stochastic or random process can be defined as a collection of random variables that is indexed by some mathematical set, meaning that each random variable of the stochastic process is uniquely associated with an element in the set.<ref name="Parzen1999"/><ref name="GikhmanSkorokhod1969page1"/> The set used to index the random variables is called the '''index set'''. Historically, the index set was some [[subset]] of the [[real line]], such as the [[natural numbers]], giving the index set the interpretation of time.<ref name="doob1953stochasticP46to47"/> Each random variable in the collection takes values from the same [[mathematical space]] known as the '''state space'''. This state space can be, for example, the integers, the real line or <math>n</math>-dimensional Euclidean space.<ref name="doob1953stochasticP46to47"/><ref name="GikhmanSkorokhod1969page1"/> An '''increment''' is the amount that a stochastic process changes between two index values, often interpreted as two points in time.<ref name="KarlinTaylor2012page27"/><ref name="Applebaum2004page1337"/> A stochastic process can have many [[Outcome (probability)|outcomes]], due to its randomness, and a single outcome of a stochastic process is called, among other names, a '''sample function''' or '''realization'''.<ref name="Lamperti1977page1"/><ref name="RogersWilliams2000page121b"/>
 
A stochastic or random process can be defined as a collection of random variables that is indexed by some mathematical set, meaning that each random variable of the stochastic process is uniquely associated with an element in the set.<ref name="Parzen1999"/><ref name="GikhmanSkorokhod1969page1"/> The set used to index the random variables is called the '''index set'''. Historically, the index set was some [[subset]] of the [[real line]], such as the [[natural numbers]], giving the index set the interpretation of time.<ref name="doob1953stochasticP46to47"/> Each random variable in the collection takes values from the same [[mathematical space]] known as the '''state space'''. This state space can be, for example, the integers, the real line or <math>n</math>-dimensional Euclidean space.<ref name="doob1953stochasticP46to47"/><ref name="GikhmanSkorokhod1969page1"/> An '''increment''' is the amount that a stochastic process changes between two index values, often interpreted as two points in time.<ref name="KarlinTaylor2012page27"/><ref name="Applebaum2004page1337"/> A stochastic process can have many [[Outcome (probability)|outcomes]], due to its randomness, and a single outcome of a stochastic process is called, among other names, a '''sample function''' or '''realization'''.<ref name="Lamperti1977page1"/><ref name="RogersWilliams2000page121b"/>
   −
 
+
随机或随机过程可以定义为随机变量的集合,这些随机变量由一些数学集合构成索引,这意味着随机过程中的每个随机变量都与集合中的一个元素唯一关联。<ref name=“Parzen1999”/><ref name=“GikhmanSkorokhod1969page1”/>用于索引随机变量的集合称为“索引集”。从历史上看,索引集是[[实线]]的一些[[子集]],例如[[自然数]],为索引集提供了对时间的解释。<ref name=“doob1953stochasticP46to47”/>集合中的每个随机变量都从相同的[[数学空间]]中获取值,称为“状态空间”。例如,这个状态空间可以是整数、实线或维欧几里德空间。<ref name=“doob1953stochasticP46to47”/>“increment”是随机过程在两个索引值之间变化的量,通常被解释为两个时间点。<ref name=“KarlinTaylor2012page27”/><ref name=“Applebaum2004page1337”/>由于随机性,随机过程可以有许多[[结果(概率)|结果]],随机过程的单个结果称为其他名称中的一个,“示例函数”或“实现”。<ref name=“Lamperti1977page1”/><ref name=“RogersWilliams2000page121b“/>
    
According to the Oxford English Dictionary, early occurrences of the word random in English with its current meaning, which relates to chance or luck, date back to the 16th century, while earlier recorded usages started in the 14th century as a noun meaning "impetuosity, great speed, force, or violence (in riding, running, striking, etc.)". The word itself comes from a Middle French word meaning "speed, haste", and it is probably derived from a French verb meaning "to run" or "to gallop". The first written appearance of the term random process pre-dates stochastic process, which the Oxford English Dictionary also gives as a synonym, and was used in an article by Francis Edgeworth published in 1888.
 
According to the Oxford English Dictionary, early occurrences of the word random in English with its current meaning, which relates to chance or luck, date back to the 16th century, while earlier recorded usages started in the 14th century as a noun meaning "impetuosity, great speed, force, or violence (in riding, running, striking, etc.)". The word itself comes from a Middle French word meaning "speed, haste", and it is probably derived from a French verb meaning "to run" or "to gallop". The first written appearance of the term random process pre-dates stochastic process, which the Oxford English Dictionary also gives as a synonym, and was used in an article by Francis Edgeworth published in 1888.
第51行: 第51行:  
[[File:Wiener process 3d.png|thumb|right|A single computer-simulated '''sample function''' or '''realization''', among other terms, of a three-dimensional Wiener or Brownian motion process for time 0 ≤ t ≤ 2. The index set of this stochastic process is the non-negative numbers, while its state space is three-dimensional Euclidean space.]]
 
[[File:Wiener process 3d.png|thumb|right|A single computer-simulated '''sample function''' or '''realization''', among other terms, of a three-dimensional Wiener or Brownian motion process for time 0 ≤ t ≤ 2. The index set of this stochastic process is the non-negative numbers, while its state space is three-dimensional Euclidean space.]]
    +
[[文件:维纳工艺3d.png | thumb | right |单个计算机模拟时间0≤t≤2的三维Wiener或Brownian运动过程的“样本函数”或“实现”。这个随机过程的指标集是非负数,而其状态空间是三维欧几里德空间
   −
 
+
===Classifications分类===
===Classifications===
      
The definition of a stochastic process varies, but a stochastic process is traditionally defined as a collection of random variables indexed by some set. Both "collection", while instead of "index set", sometimes the terms "parameter set" though sometimes it is only used when the stochastic process takes real values. while the terms stochastic process and random process are usually used when the index set is interpreted as time, and other terms are used such as random field when the index set is <math>n</math>-dimensional Euclidean space <math>\mathbb{R}^n</math> or a manifold. <math>\{X(t)\}</math> or simply as <math>X</math> or <math>X(t)</math>, although <math>X(t)</math> is regarded as an abuse of function notation. For example, <math>X(t)</math> or <math>X_t</math> are used to refer to the random variable with the index <math>t</math>, and not the entire stochastic process. In other words, a Bernoulli process is a sequence of iid Bernoulli random variables, where each coin flip is an example of a Bernoulli trial.
 
The definition of a stochastic process varies, but a stochastic process is traditionally defined as a collection of random variables indexed by some set. Both "collection", while instead of "index set", sometimes the terms "parameter set" though sometimes it is only used when the stochastic process takes real values. while the terms stochastic process and random process are usually used when the index set is interpreted as time, and other terms are used such as random field when the index set is <math>n</math>-dimensional Euclidean space <math>\mathbb{R}^n</math> or a manifold. <math>\{X(t)\}</math> or simply as <math>X</math> or <math>X(t)</math>, although <math>X(t)</math> is regarded as an abuse of function notation. For example, <math>X(t)</math> or <math>X_t</math> are used to refer to the random variable with the index <math>t</math>, and not the entire stochastic process. In other words, a Bernoulli process is a sequence of iid Bernoulli random variables, where each coin flip is an example of a Bernoulli trial.
第61行: 第61行:  
A stochastic process can be classified in different ways, for example, by its state space, its index set, or the dependence among the random variables. One common way of classification is by the [[cardinality]] of the index set and the state space.<ref name="Florescu2014page294"/><ref name="KarlinTaylor2012page26">{{cite book|author1=Samuel Karlin|author2=Howard E. Taylor|title=A First Course in Stochastic Processes|url=https://books.google.com/books?id=dSDxjX9nmmMC|year=2012|publisher=Academic Press|isbn=978-0-08-057041-9|page=26}}</ref><ref>{{cite book|author1=Donald L. Snyder|author2=Michael I. Miller|title=Random Point Processes in Time and Space|url=https://books.google.com/books?id=c_3UBwAAQBAJ|year=2012|publisher=Springer Science & Business Media|isbn=978-1-4612-3166-0|pages=24, 25}}</ref>
 
A stochastic process can be classified in different ways, for example, by its state space, its index set, or the dependence among the random variables. One common way of classification is by the [[cardinality]] of the index set and the state space.<ref name="Florescu2014page294"/><ref name="KarlinTaylor2012page26">{{cite book|author1=Samuel Karlin|author2=Howard E. Taylor|title=A First Course in Stochastic Processes|url=https://books.google.com/books?id=dSDxjX9nmmMC|year=2012|publisher=Academic Press|isbn=978-0-08-057041-9|page=26}}</ref><ref>{{cite book|author1=Donald L. Snyder|author2=Michael I. Miller|title=Random Point Processes in Time and Space|url=https://books.google.com/books?id=c_3UBwAAQBAJ|year=2012|publisher=Springer Science & Business Media|isbn=978-1-4612-3166-0|pages=24, 25}}</ref>
   −
 
+
随机过程可以用不同的方法进行分类,例如,根据其状态空间、指标集或随机变量之间的相关性。一种常见的分类方法是通过索引集和状态空间的[[基数]]=https://books.google.com/books?id=dSDxjX9nmmMC | year=2012 | publisher=academical Press | isbn=978-0-08-057041-9 | page=26}</ref>{cite book | author1=Donald L.Snyder | author2=Michael I.Miller | title=时空中的随机点过程| url=https://books.google.com/books?id=c|3UBwAAQBAJ|year=2012 | publisher=Springer Science&Business Media | isbn=978-1-4612-3166-0 |页面=24,25}</ref>
    
When interpreted as time, if the index set of a stochastic process has a finite or countable number of elements, such as a finite set of numbers, the set of integers, or the natural numbers, then the stochastic process is said to be in '''[[discrete time]]'''.<ref name="Billingsley2008page482"/><ref name="Borovkov2013page527">{{cite book|author=Alexander A. Borovkov|title=Probability Theory|url=https://books.google.com/books?id=hRk_AAAAQBAJ|year=2013|publisher=Springer Science & Business Media|isbn=978-1-4471-5201-9|page=527}}</ref> If the index set is some interval of the real line, then time is said to be '''[[continuous time|continuous]]'''. The two types of stochastic processes are respectively referred to as '''discrete-time''' and '''[[continuous-time stochastic process]]es'''.<ref name="KarlinTaylor2012page27"/><ref name="Brémaud2014page120"/><ref name="Rosenthal2006page177">{{cite book|author=Jeffrey S Rosenthal|title=A First Look at Rigorous Probability Theory|url=https://books.google.com/books?id=am1IDQAAQBAJ|year=2006|publisher=World Scientific Publishing Co Inc|isbn=978-981-310-165-4|pages=177–178}}</ref> Discrete-time stochastic processes are considered easier to study because continuous-time processes require more advanced mathematical techniques and knowledge, particularly due to the index set being uncountable.<ref name="KloedenPlaten2013page63">{{cite book|author1=Peter E. Kloeden|author2=Eckhard Platen|title=Numerical Solution of Stochastic Differential Equations|url=https://books.google.com/books?id=r9r6CAAAQBAJ=PA1|year=2013|publisher=Springer Science & Business Media|isbn=978-3-662-12616-5|page=63}}</ref><ref name="Khoshnevisan2006page153">{{cite book|author=Davar Khoshnevisan|title=Multiparameter Processes: An Introduction to Random Fields|url=https://books.google.com/books?id=XADpBwAAQBAJ|year=2006|publisher=Springer Science & Business Media|isbn=978-0-387-21631-7|pages=153–155}}</ref> If the index set is the integers, or some subset of them, then the stochastic process can also be called a '''random sequence'''.<ref name="Borovkov2013page527"/>
 
When interpreted as time, if the index set of a stochastic process has a finite or countable number of elements, such as a finite set of numbers, the set of integers, or the natural numbers, then the stochastic process is said to be in '''[[discrete time]]'''.<ref name="Billingsley2008page482"/><ref name="Borovkov2013page527">{{cite book|author=Alexander A. Borovkov|title=Probability Theory|url=https://books.google.com/books?id=hRk_AAAAQBAJ|year=2013|publisher=Springer Science & Business Media|isbn=978-1-4471-5201-9|page=527}}</ref> If the index set is some interval of the real line, then time is said to be '''[[continuous time|continuous]]'''. The two types of stochastic processes are respectively referred to as '''discrete-time''' and '''[[continuous-time stochastic process]]es'''.<ref name="KarlinTaylor2012page27"/><ref name="Brémaud2014page120"/><ref name="Rosenthal2006page177">{{cite book|author=Jeffrey S Rosenthal|title=A First Look at Rigorous Probability Theory|url=https://books.google.com/books?id=am1IDQAAQBAJ|year=2006|publisher=World Scientific Publishing Co Inc|isbn=978-981-310-165-4|pages=177–178}}</ref> Discrete-time stochastic processes are considered easier to study because continuous-time processes require more advanced mathematical techniques and knowledge, particularly due to the index set being uncountable.<ref name="KloedenPlaten2013page63">{{cite book|author1=Peter E. Kloeden|author2=Eckhard Platen|title=Numerical Solution of Stochastic Differential Equations|url=https://books.google.com/books?id=r9r6CAAAQBAJ=PA1|year=2013|publisher=Springer Science & Business Media|isbn=978-3-662-12616-5|page=63}}</ref><ref name="Khoshnevisan2006page153">{{cite book|author=Davar Khoshnevisan|title=Multiparameter Processes: An Introduction to Random Fields|url=https://books.google.com/books?id=XADpBwAAQBAJ|year=2006|publisher=Springer Science & Business Media|isbn=978-0-387-21631-7|pages=153–155}}</ref> If the index set is the integers, or some subset of them, then the stochastic process can also be called a '''random sequence'''.<ref name="Borovkov2013page527"/>
    +
当解释为时间时,如果随机过程的指标集有有限个或可数个元素,例如有限的一组数、一组整数或自然数,那么随机过程被称为“'[[discrete time]]''”。<ref name=“Billingsley2008page482”/><ref name=“Borovkov2013page527”>{cite book | author=Alexander A.Borovkov | title=Probability Theory |网址=https://books.google.com/books?id=hRk_AAAAQBAJ | year=2013 | publisher=Springer Science&Business Media | isbn=978-1-4471-5201-9 | page=527}}</ref>如果索引集是实线的某个区间,则时间被称为“'[[continuous time|continuous]]”。这两类随机过程分别被称为“离散时间”和“[[连续时间随机过程]]es”。<ref name=“KarlinTaylor2012page27”/><ref name=“Brémaud2014page120”/><ref name=“Rosenthal2006page177”>{cite book | author=Jeffrey S Rosenthal | title=A First Look on critical Probability理论|网址=https://books.google.com/books?id=am1IDQAAQBAJ | year=2006 | publisher=World Scientific Publishing Co Inc | isbn=978-981-310-165-4 | pages=177-178}</ref>离散时间随机过程被认为更容易研究,因为连续时间过程需要更先进的数学技术和知识,特别是由于索引集是不可数的。<ref name=“KloedenPlaten2013page63”>{cite book | author1=Peter E.Kloeden | author2=Eckhard Platen | title=随机微分方程的数值解=https://books.google.com/books?id=r9r6CAAAQBAJ=PA1 | year=2013 | publisher=Springer Science&Business Media | isbn=978-3-662-12616-5 | page=63}</ref><ref name=“khoshnivesan2006page153”>{cite book | author=Davar khoshnivesan | title=多参数过程:随机字段简介| url=https://books.google.com/books?id=XADpBwAAQBAJ | year=2006 | publisher=Springer Science&Business Media | isbn=978-0-387-21631-7 | pages=153–155}</ref>如果索引集是整数或整数的子集,则随机过程也可以称为“随机序列”。<ref name=“Borovkov2013page527”/>
    +
If the state space is the integers or natural numbers, then the stochastic process is called a '''discrete''' or '''integer-valued stochastic process'''. If the state space is the real line, then the stochastic process is referred to as a '''real-valued stochastic process''' or a '''process with continuous state space'''. If the state space is <math>n</math>-dimensional Euclidean space, then the stochastic process is called a <math>n</math>-'''dimensional vector process''' or <math>n</math>-'''vector process'''.<ref name="Florescu2014page294"/><ref name="KarlinTaylor2012page26"/>
   −
If the state space is the integers or natural numbers, then the stochastic process is called a '''discrete''' or '''integer-valued stochastic process'''. If the state space is the real line, then the stochastic process is referred to as a '''real-valued stochastic process''' or a '''process with continuous state space'''. If the state space is <math>n</math>-dimensional Euclidean space, then the stochastic process is called a <math>n</math>-'''dimensional vector process''' or <math>n</math>-'''vector process'''.<ref name="Florescu2014page294"/><ref name="KarlinTaylor2012page26"/>
+
如果状态空间是整数或自然数,则随机过程称为“离散”或“整值随机过程”。如果状态空间是实线,则随机过程被称为“实值随机过程”或“具有连续状态空间的过程”。如果状态空间是<math>n</math>-维欧几里德空间,则随机过程称为<math>n</math>-“维向量过程”或<math>n</math>—“向量过程”。<ref name=“florescu214page294”/><ref name=“KarlinTaylor2012page26”/>
    
Random walks are stochastic processes that are usually defined as sums of iid random variables or random vectors in Euclidean space, so they are processes that change in discrete time. But some also use the term to refer to processes that change in continuous time, particularly the Wiener process used in finance, which has led to some confusion, resulting in its criticism. There are other various types of random walks, defined so their state spaces can be other mathematical objects, such as lattices and groups, and in general they are highly studied and have many applications in different disciplines.
 
Random walks are stochastic processes that are usually defined as sums of iid random variables or random vectors in Euclidean space, so they are processes that change in discrete time. But some also use the term to refer to processes that change in continuous time, particularly the Wiener process used in finance, which has led to some confusion, resulting in its criticism. There are other various types of random walks, defined so their state spaces can be other mathematical objects, such as lattices and groups, and in general they are highly studied and have many applications in different disciplines.
第75行: 第77行:       −
===Etymology===
+
===Etymology词源学===
    
A classic example of a random walk is known as the simple random walk, which is a stochastic process in discrete time with the integers as the state space, and is based on a Bernoulli process, where each Bernoulli variable takes either the value positive one or negative one. In other words, the simple random walk takes place on the integers, and its value increases by one with probability, say, <math>p</math>, or decreases by one with probability <math>1-p</math>, so the index set of this random walk is the natural numbers, while its state space is the integers. If the <math>p=0.5</math>, this random walk is called a symmetric random walk.
 
A classic example of a random walk is known as the simple random walk, which is a stochastic process in discrete time with the integers as the state space, and is based on a Bernoulli process, where each Bernoulli variable takes either the value positive one or negative one. In other words, the simple random walk takes place on the integers, and its value increases by one with probability, say, <math>p</math>, or decreases by one with probability <math>1-p</math>, so the index set of this random walk is the natural numbers, while its state space is the integers. If the <math>p=0.5</math>, this random walk is called a symmetric random walk.
第83行: 第85行:  
The word ''stochastic'' in [[English language|English]] was originally used as an adjective with the definition "pertaining to conjecturing", and stemming from a [[Greek language|Greek]] word meaning "to aim at a mark, guess", and the [[Oxford English Dictionary]] gives the year 1662 as its earliest occurrence.<ref name="OxfordStochastic">{{Cite OED|Stochastic}}</ref> In his work on probability ''Ars Conjectandi'', originally published in Latin in 1713, [[Jakob Bernoulli]] used the phrase "Ars Conjectandi sive Stochastice", which has been translated to "the art of conjecturing or stochastics".<ref name="Sheĭnin2006page5">{{cite book|author=O. B. Sheĭnin|title=Theory of probability and statistics as exemplified in short dictums|url=https://books.google.com/books?id=XqMZAQAAIAAJ|year=2006|publisher=NG Verlag|isbn=978-3-938417-40-9|page=5}}</ref> This phrase was used, with reference to Bernoulli, by [[Ladislaus Bortkiewicz]]<ref name="SheyninStrecker2011page136">{{cite book|author1=Oscar Sheynin|author2=Heinrich Strecker|title=Alexandr A. Chuprov: Life, Work, Correspondence|url=https://books.google.com/books?id=1EJZqFIGxBIC&pg=PA9|year=2011|publisher=V&R unipress GmbH|isbn=978-3-89971-812-6|page=136}}</ref> who in 1917 wrote in German the word ''stochastik'' with a sense meaning random. The term ''stochastic process'' first appeared in English in a 1934 paper by [[Joseph Doob]].<ref name="OxfordStochastic"/> For the term and a specific mathematical definition, Doob cited another 1934 paper, where the term ''stochastischer Prozeß'' was used in German by [[Aleksandr Khinchin]],<ref name="Doob1934"/><ref name="Khintchine1934">{{cite journal|last1=Khintchine|first1=A.|title=Korrelationstheorie der stationeren stochastischen Prozesse|journal=Mathematische Annalen|volume=109|issue=1|year=1934|pages=604–615|issn=0025-5831|doi=10.1007/BF01449156}}</ref> though the German term had been used earlier, for example, by Andrei Kolmogorov in 1931.<ref name="Kolmogoroff1931page1">{{cite journal|last1=Kolmogoroff|first1=A.|title=Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung|journal=Mathematische Annalen|volume=104|issue=1|year=1931|page=1|issn=0025-5831|doi=10.1007/BF01457949}}</ref>
 
The word ''stochastic'' in [[English language|English]] was originally used as an adjective with the definition "pertaining to conjecturing", and stemming from a [[Greek language|Greek]] word meaning "to aim at a mark, guess", and the [[Oxford English Dictionary]] gives the year 1662 as its earliest occurrence.<ref name="OxfordStochastic">{{Cite OED|Stochastic}}</ref> In his work on probability ''Ars Conjectandi'', originally published in Latin in 1713, [[Jakob Bernoulli]] used the phrase "Ars Conjectandi sive Stochastice", which has been translated to "the art of conjecturing or stochastics".<ref name="Sheĭnin2006page5">{{cite book|author=O. B. Sheĭnin|title=Theory of probability and statistics as exemplified in short dictums|url=https://books.google.com/books?id=XqMZAQAAIAAJ|year=2006|publisher=NG Verlag|isbn=978-3-938417-40-9|page=5}}</ref> This phrase was used, with reference to Bernoulli, by [[Ladislaus Bortkiewicz]]<ref name="SheyninStrecker2011page136">{{cite book|author1=Oscar Sheynin|author2=Heinrich Strecker|title=Alexandr A. Chuprov: Life, Work, Correspondence|url=https://books.google.com/books?id=1EJZqFIGxBIC&pg=PA9|year=2011|publisher=V&R unipress GmbH|isbn=978-3-89971-812-6|page=136}}</ref> who in 1917 wrote in German the word ''stochastik'' with a sense meaning random. The term ''stochastic process'' first appeared in English in a 1934 paper by [[Joseph Doob]].<ref name="OxfordStochastic"/> For the term and a specific mathematical definition, Doob cited another 1934 paper, where the term ''stochastischer Prozeß'' was used in German by [[Aleksandr Khinchin]],<ref name="Doob1934"/><ref name="Khintchine1934">{{cite journal|last1=Khintchine|first1=A.|title=Korrelationstheorie der stationeren stochastischen Prozesse|journal=Mathematische Annalen|volume=109|issue=1|year=1934|pages=604–615|issn=0025-5831|doi=10.1007/BF01449156}}</ref> though the German term had been used earlier, for example, by Andrei Kolmogorov in 1931.<ref name="Kolmogoroff1931page1">{{cite journal|last1=Kolmogoroff|first1=A.|title=Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung|journal=Mathematische Annalen|volume=104|issue=1|year=1931|page=1|issn=0025-5831|doi=10.1007/BF01457949}}</ref>
    +
在[[英语语言|英语]]中,“随机”一词最初用作形容词,其定义是“与推测有关”,源于一个[[希腊语|希腊语]]一词,意思是“瞄准一个标记,猜测”,而[[牛津英语词典]]将1662年作为最早出现的年份。<ref name=“Oxfordstraphic”>{Cite OED | random}</ref>在他关于概率“Ars conquectandi”的著作中,最初于1713年以拉丁文出版,[[Jakob Bernoulli]]使用了“Ars conquectandi istice”这个短语,这本书已经被翻译成“猜想或随机的艺术”。<ref name=“Sheĭnin2006page5”>{cite book | author=O.B.Sheĭnin|title=概率论和统计学,以简短的口述为例=https://books.google.com/books?年=2006年;publisher=NG Verlag Verlag | isbn=978-3-938417-40-9 | page=5}</ref>这一短语是[[Ladislaus bortkiewiccz]]]<ref name=“sheyninstrrecker2011page136”>{{引用本书〈author1=OscarSheynin;author1=奥斯卡Sheynin;author2=Heinrich Strecker;title=Alexandr A.Chuprov A.Chprov:生活,工作,工作,生活,工作,工作,生活,工作,工作,工作,生活,工作,工作,工作,工作,工作,工作,生活,工作,工作,工作,工作在,通信地址=https://books.google.com/books?id=1EJZqFIGxBIC&pg=PA9 | year=2011 | publisher=V&R unipress GmbH | isbn=978-3-89971-812-6 | page=136}</ref>他在1917年用德语写下了“随机”一词。术语“随机过程”最早出现在1934年[[Joseph Doob]]的一篇论文中。<ref name=“oxfordstractical”/>对于这个术语和一个具体的数学定义,Doob引用了另一篇1934年的论文,其中[[Aleksandr Khinchin]]在德语中使用了术语“随机过程”,<ref name=“Doob1934”/><<ref name=“Doob1934”>>{{引用期刊| last1=Khintchine | first1=A.| title=KorrationationTheOrie Oreider StatinerenStochastische陈Prozessese | journal=MatheMatheMatche Annalen;volume=109;volume=109;问题=1年=1934年|年=1934 |第604–615 | Issnn=00225-5831 | doi=10.1007/BF014449156}}}}}{}}}}例如,尽管德语这个词在早些时候被使用过,安德烈科莫戈罗夫于1931年由Andrei Kolmogorov1931年由Andrei Kolmogorov1931年的Andrei Kolmogorov1931Page1>{〈引用期刊| last1=Kolmogoroff 124;first1=A.| title=ÜBerDie Analyt陈Methoden在德Wahrscheinlickeitsrcherechnung | journal=MatheMatheMatheAnnanLen;卷=104 |问题=1年=1931年|页=1 |页=1 | issn=00225-5831 | 124; doi=10.1007/}}</ref>
       
According to the Oxford English Dictionary, early occurrences of the word ''random'' in English with its current meaning, which relates to chance or luck, date back to the 16th century, while earlier recorded usages started in the 14th century as a noun meaning "impetuosity, great speed, force, or violence (in riding, running, striking, etc.)". The word itself comes from a Middle French word meaning "speed, haste", and it is probably derived from a French verb meaning "to run" or "to gallop". The first written appearance of the term ''random process'' pre-dates ''stochastic process'', which the Oxford English Dictionary also gives as a synonym, and was used in an article by [[Francis Edgeworth]] published in 1888.<ref name="OxfordRandom">{{Cite OED|Random}}</ref>
 
According to the Oxford English Dictionary, early occurrences of the word ''random'' in English with its current meaning, which relates to chance or luck, date back to the 16th century, while earlier recorded usages started in the 14th century as a noun meaning "impetuosity, great speed, force, or violence (in riding, running, striking, etc.)". The word itself comes from a Middle French word meaning "speed, haste", and it is probably derived from a French verb meaning "to run" or "to gallop". The first written appearance of the term ''random process'' pre-dates ''stochastic process'', which the Oxford English Dictionary also gives as a synonym, and was used in an article by [[Francis Edgeworth]] published in 1888.<ref name="OxfordRandom">{{Cite OED|Random}}</ref>
    +
根据《牛津英语词典》,英语中“random”(随机)一词的最早出现时间可追溯到16世纪,而早期有记载的用法则始于14世纪,意思是“急躁、速度快、力量大或暴力(骑马、跑步、击打等)”。这个词本身来自法语中间的一个词,意思是“速度,匆忙”,它可能是从法语动词“奔跑”或“飞奔”衍生而来。术语“随机过程”的首次书面出现是在“随机过程”之前出现的,牛津英语词典也将其作为同义词出现,并被[[Francis Edgeworth]]于1888年发表的一篇文章中使用。<ref name=“OxfordRandom”>{Cite OED | random}</ref>
   −
 
+
===Terminology术语===
===Terminology===
      
The Wiener process is a stochastic process with stationary and independent increments that are normally distributed based on the size of the increments. The Wiener process is named after Norbert Wiener, who proved its mathematical existence, but the process is also called the Brownian motion process or just Brownian motion due to its historical connection as a model for Brownian movement in liquids.
 
The Wiener process is a stochastic process with stationary and independent increments that are normally distributed based on the size of the increments. The Wiener process is named after Norbert Wiener, who proved its mathematical existence, but the process is also called the Brownian motion process or just Brownian motion due to its historical connection as a model for Brownian movement in liquids.
第97行: 第100行:  
The definition of a stochastic process varies,<ref name="FristedtGray2013page580">{{cite book|author1=Bert E. Fristedt|author2=Lawrence F. Gray|title=A Modern Approach to Probability Theory|url=https://books.google.com/books?id=9xT3BwAAQBAJ&pg=PA716|year= 2013|publisher=Springer Science & Business Media|isbn=978-1-4899-2837-5|page=580}}</ref> but a stochastic process is traditionally defined as a collection of random variables indexed by some set.<ref name="RogersWilliams2000page121"/><ref name="Asmussen2003page408"/> The terms ''random process'' and ''stochastic process'' are considered synonyms and are used interchangeably, without the index set being precisely specified.<ref name="Kallenberg2002page24"/><ref name="ChaumontYor2012"/><ref name="AdlerTaylor2009page7"/><ref name="Stirzaker2005page45">{{cite book|author=David Stirzaker|title=Stochastic Processes and Models|url=https://books.google.com/books?id=0avUelS7e7cC|year=2005|publisher=Oxford University Press|isbn=978-0-19-856814-8|page=45}}</ref><ref name="Rosenblatt1962page91">{{cite book|author=Murray Rosenblatt|title=Random Processes|url=https://archive.org/details/randomprocesses00rose_0|url-access=registration|year=1962|publisher=Oxford University Press|page=[https://archive.org/details/randomprocesses00rose_0/page/91 91]}}</ref><ref name="Gubner2006page383">{{cite book|author=John A. Gubner|title=Probability and Random Processes for Electrical and Computer Engineers|url=https://books.google.com/books?id=pa20eZJe4LIC|year=2006|publisher=Cambridge University Press|isbn=978-1-139-45717-0|page=383}}</ref> Both "collection",<ref name="Lamperti1977page1"/><ref name="Stirzaker2005page45"/> or "family" are used<ref name="Parzen1999"/><ref name="Ito2006page13">{{cite book|author=Kiyosi Itō|title=Essentials of Stochastic Processes|url=https://books.google.com/books?id=pY5_DkvI-CcC&pg=PR4|year=2006|publisher=American Mathematical Soc.|isbn=978-0-8218-3898-3|page=13}}</ref> while instead of "index set", sometimes the terms "parameter set"<ref name="Lamperti1977page1"/> or "parameter space"<ref name="AdlerTaylor2009page7"/> are used.
 
The definition of a stochastic process varies,<ref name="FristedtGray2013page580">{{cite book|author1=Bert E. Fristedt|author2=Lawrence F. Gray|title=A Modern Approach to Probability Theory|url=https://books.google.com/books?id=9xT3BwAAQBAJ&pg=PA716|year= 2013|publisher=Springer Science & Business Media|isbn=978-1-4899-2837-5|page=580}}</ref> but a stochastic process is traditionally defined as a collection of random variables indexed by some set.<ref name="RogersWilliams2000page121"/><ref name="Asmussen2003page408"/> The terms ''random process'' and ''stochastic process'' are considered synonyms and are used interchangeably, without the index set being precisely specified.<ref name="Kallenberg2002page24"/><ref name="ChaumontYor2012"/><ref name="AdlerTaylor2009page7"/><ref name="Stirzaker2005page45">{{cite book|author=David Stirzaker|title=Stochastic Processes and Models|url=https://books.google.com/books?id=0avUelS7e7cC|year=2005|publisher=Oxford University Press|isbn=978-0-19-856814-8|page=45}}</ref><ref name="Rosenblatt1962page91">{{cite book|author=Murray Rosenblatt|title=Random Processes|url=https://archive.org/details/randomprocesses00rose_0|url-access=registration|year=1962|publisher=Oxford University Press|page=[https://archive.org/details/randomprocesses00rose_0/page/91 91]}}</ref><ref name="Gubner2006page383">{{cite book|author=John A. Gubner|title=Probability and Random Processes for Electrical and Computer Engineers|url=https://books.google.com/books?id=pa20eZJe4LIC|year=2006|publisher=Cambridge University Press|isbn=978-1-139-45717-0|page=383}}</ref> Both "collection",<ref name="Lamperti1977page1"/><ref name="Stirzaker2005page45"/> or "family" are used<ref name="Parzen1999"/><ref name="Ito2006page13">{{cite book|author=Kiyosi Itō|title=Essentials of Stochastic Processes|url=https://books.google.com/books?id=pY5_DkvI-CcC&pg=PR4|year=2006|publisher=American Mathematical Soc.|isbn=978-0-8218-3898-3|page=13}}</ref> while instead of "index set", sometimes the terms "parameter set"<ref name="Lamperti1977page1"/> or "parameter space"<ref name="AdlerTaylor2009page7"/> are used.
   −
 
+
随机过程的定义是不同的,<ref name=“FristedGray2013Page580”>{cite book | author1=Bert E.Fristedt|author2=Lawrence F.Gray | title=a Modern Approach to Probability Theory |网址=https://books.google.com/books?id=9xT3BwAAQBAJ&pg=PA716 | year=2013 | publisher=Springer Science&Business Media | isbn=978-1-4899-2837-5 | page=580}}</ref>但是随机过程传统上被定义为由一些集合索引的随机变量的集合进程“”被视为同义词,可以互换使用,而无需精确指定索引集。<ref name=“KallenbergG2002Page24”/><ref name=“ChaumontYor2012”/><ref name=“adlertaylor2009 page7”/><ref name=“Stirzaker2005page45”>{cite book | author=David Stirzaker | title=random Processes and Models | url=https://books.google.com/books?id=0avUelS7e7cC | year=2005 | publisher=Oxford University Press | isbn=978-0-19-856814-8 | page=45}</ref><ref name=“Rosenblatt1962page91”>{cite book |作者=Murray Rosenblatt | title=Random Processes | url=https://archive.org/details/randomprocess00rose\u 0|url access=注册|年份=1962 | publisher=牛津大学按|页=[https://archive.org/details/randomprocess00rose_0/page/9191]}</ref><ref name=“Gubner2006page383”>{cite book | author=John A.Gubner | title=电气和计算机工程师的概率和随机过程| url=https://books.google.com/books?id=pa20eZJe4LIC | year=2006 | publisher=Cambridge University Press | isbn=978-1-139-45717-0 | page=383}</ref>两个“收藏”,<ref name=“Lamperti1977page1”/><ref name=“Stirzaker2005page45”/>或“family”用于<ref name=“Parzen1999”/><ref name=“Ito2006page13”>{cite book | author=Kiyosi Itōtitle=Essentials of randomic Processes|url=https://books.google.com/books?id=pY5_DkvI-CcC&pg=PR4 | year=2006 | publisher=American Mathematic Soc.| isbn=978-0-8218-3898-3 | page=13}}</ref>而不是“索引集”,有时使用术语“parameter set”<ref name=“Lamperti1977page1”/>或“parameter space”<ref name=“adlertaylor2009 page7”/>。
    
Realizations of Wiener processes (or Brownian motion processes) with drift () and without drift ().
 
Realizations of Wiener processes (or Brownian motion processes) with drift () and without drift ().
第105行: 第108行:  
The term ''random function'' is also used to refer to a stochastic or random process,<ref name="GikhmanSkorokhod1969page1"/><ref name="Loeve1978">{{cite book|author=M. Loève|title=Probability Theory II|url=https://books.google.com/books?id=1y229yBbULIC|year=1978|publisher=Springer Science & Business Media|isbn=978-0-387-90262-3|page=163}}</ref><ref name="Brémaud2014page133">{{cite book|author=Pierre Brémaud|title=Fourier Analysis and Stochastic Processes|url=https://books.google.com/books?id=dP2JBAAAQBAJ&pg=PA1|year=2014|publisher=Springer|isbn=978-3-319-09590-5|page=133}}</ref> though sometimes it is only used when the stochastic process takes real values.<ref name="Lamperti1977page1"/><ref name="Ito2006page13"/> This term is also used when the index sets are mathematical spaces other than the real line,<ref name="GikhmanSkorokhod1969page1"/><ref name="GusakKukush2010page1">{{harvtxt|Gusak|Kukush|Kulik|Mishura|2010}}, p. 1</ref> while the terms ''stochastic process'' and ''random process'' are usually used when the index set is interpreted as time,<ref name="GikhmanSkorokhod1969page1"/><ref name="GusakKukush2010page1"/><ref name="Bass2011page1">{{cite book|author=Richard F. Bass|title=Stochastic Processes|url=https://books.google.com/books?id=Ll0T7PIkcKMC|year=2011|publisher=Cambridge University Press|isbn=978-1-139-50147-7|page=1}}</ref> and other terms are used such as ''random field'' when the index set is <math>n</math>-dimensional Euclidean space <math>\mathbb{R}^n</math> or a [[manifold]].<ref name="GikhmanSkorokhod1969page1"/><ref name="Lamperti1977page1"/><ref name="AdlerTaylor2009page7"/>
 
The term ''random function'' is also used to refer to a stochastic or random process,<ref name="GikhmanSkorokhod1969page1"/><ref name="Loeve1978">{{cite book|author=M. Loève|title=Probability Theory II|url=https://books.google.com/books?id=1y229yBbULIC|year=1978|publisher=Springer Science & Business Media|isbn=978-0-387-90262-3|page=163}}</ref><ref name="Brémaud2014page133">{{cite book|author=Pierre Brémaud|title=Fourier Analysis and Stochastic Processes|url=https://books.google.com/books?id=dP2JBAAAQBAJ&pg=PA1|year=2014|publisher=Springer|isbn=978-3-319-09590-5|page=133}}</ref> though sometimes it is only used when the stochastic process takes real values.<ref name="Lamperti1977page1"/><ref name="Ito2006page13"/> This term is also used when the index sets are mathematical spaces other than the real line,<ref name="GikhmanSkorokhod1969page1"/><ref name="GusakKukush2010page1">{{harvtxt|Gusak|Kukush|Kulik|Mishura|2010}}, p. 1</ref> while the terms ''stochastic process'' and ''random process'' are usually used when the index set is interpreted as time,<ref name="GikhmanSkorokhod1969page1"/><ref name="GusakKukush2010page1"/><ref name="Bass2011page1">{{cite book|author=Richard F. Bass|title=Stochastic Processes|url=https://books.google.com/books?id=Ll0T7PIkcKMC|year=2011|publisher=Cambridge University Press|isbn=978-1-139-50147-7|page=1}}</ref> and other terms are used such as ''random field'' when the index set is <math>n</math>-dimensional Euclidean space <math>\mathbb{R}^n</math> or a [[manifold]].<ref name="GikhmanSkorokhod1969page1"/><ref name="Lamperti1977page1"/><ref name="AdlerTaylor2009page7"/>
   −
 
+
术语“随机函数”也用于指随机或随机过程,<ref name=“GikhmanSkorokhod1969page1”/><ref name=“Loeve1978”>{cite book | author=M.Loève|title=Probability Theory II | url=https://books.google.com/books?id=1y229ybulic | year=1978 | publisher=Springer Science&Business Media | isbn=978-0-387-90262-3 | page=163}</ref><ref name=“Brémaud2014page133”>{cite book |作者=Pierre Brémaud | title=Fourier Analysis and randocial Processes |网址=https://books.google.com/books?id=dP2JBAAAQBAJ&pg=PA1 | year=2014 | publisher=Springer | isbn=978-3-319-09590-5 | page=133}</ref>尽管有时它只在随机过程取实值时使用。<ref name=“Lamperti1977page1”/><ref name=“Ito2006page13”/>当索引集是数学空间而不是实线时,也使用这个术语,<ref name=“GikhmanSkorokhod1969page1”/><ref name=“gusakkush2010page1”>{harvxt | Gusak | Kukush | Kulik | Mishura | 2010},p.1</ref>,而术语“随机过程”和“随机过程”通常在指数集被解释为时间时使用,<ref name=“GikhmanSkorokhod1969page1”/><ref name=“GusakKukush2010page1”/><ref name=“Bass2011page1”>{引用图书|作者=Richard F.Bass | title=随机过程| url=https://books.google.com/books?id=Ll0T7PIkcKMC | year=2011 | publisher=Cambridge University Press | isbn=978-1-139-50147-7 | page=1}</ref>和其他术语,例如当索引集是<math>n</math>-维欧几里德空间<math>\mathbb{R}^n</math>或[[流形]].<ref name=“GikhmanSkorokhod1969page1”/><ref name=“Lamperti1977page1”/><ref name=“GikhmanSkorokhod1969page1”/><ref name=“Lamperti1977page1”/>name=“adlertaylor2009第7页”/>
    
Playing a central role in the theory of probability, the Wiener process is often considered the most important and studied stochastic process, with connections to other stochastic processes. Its index set and state space are the non-negative numbers and real numbers, respectively, so it has both continuous index set and states space. But the process can be defined more generally so its state space can be <math>n</math>-dimensional Euclidean space. If the mean of any increment is zero, then the resulting Wiener or Brownian motion process is said to have zero drift. If the mean of the increment for any two points in time is equal to the time difference multiplied by some constant <math> \mu</math>, which is a real number, then the resulting stochastic process is said to have drift <math> \mu</math>.
 
Playing a central role in the theory of probability, the Wiener process is often considered the most important and studied stochastic process, with connections to other stochastic processes. Its index set and state space are the non-negative numbers and real numbers, respectively, so it has both continuous index set and states space. But the process can be defined more generally so its state space can be <math>n</math>-dimensional Euclidean space. If the mean of any increment is zero, then the resulting Wiener or Brownian motion process is said to have zero drift. If the mean of the increment for any two points in time is equal to the time difference multiplied by some constant <math> \mu</math>, which is a real number, then the resulting stochastic process is said to have drift <math> \mu</math>.
第111行: 第114行:  
在概率论中起着核心作用的维纳过程,通常被认为是最重要的和研究过的随机过程过程,与其他随机过程有联系。它的索引集和状态空间分别为非负数和实数,因此它既有连续索引集又有状态空间。但是这个过程可以定义得更广泛,因此它的状态空间可以是维的欧氏空间。如果任何增量的平均值为零,那么由此产生的 Wiener 或 Brownian 运动过程称为零漂过程。如果任意两个时间点的增量的平均值等于时间差乘以某个常数,即一个实数,那么得到的随机过程就是漂移。
 
在概率论中起着核心作用的维纳过程,通常被认为是最重要的和研究过的随机过程过程,与其他随机过程有联系。它的索引集和状态空间分别为非负数和实数,因此它既有连续索引集又有状态空间。但是这个过程可以定义得更广泛,因此它的状态空间可以是维的欧氏空间。如果任何增量的平均值为零,那么由此产生的 Wiener 或 Brownian 运动过程称为零漂过程。如果任意两个时间点的增量的平均值等于时间差乘以某个常数,即一个实数,那么得到的随机过程就是漂移。
   −
===Notation===
+
===Notation符号===
    
A stochastic process can be denoted, among other ways, by <math>\{X(t)\}_{t\in T} </math>,<ref name="Brémaud2014page120"/> <math>\{X_t\}_{t\in T} </math>,<ref name="Asmussen2003page408"/> <math>\{X_t\}</math><ref name="Lamperti1977page3">,{{cite book|author=John Lamperti|title=Stochastic processes: a survey of the mathematical theory|url=https://books.google.com/books?id=Pd4cvgAACAAJ|year=1977|publisher=Springer-Verlag|isbn=978-3-540-90275-1|page=3}}</ref> <math>\{X(t)\}</math> or simply as <math>X</math> or <math>X(t)</math>, although <math>X(t)</math> is regarded as an [[abuse of notation#Function notation|abuse of function notation]].<ref name="Klebaner2005page55">{{cite book|author=Fima C. Klebaner|title=Introduction to Stochastic Calculus with Applications|url=https://books.google.com/books?id=JYzW0uqQxB0C|year=2005|publisher=Imperial College Press|isbn=978-1-86094-555-7|page=55}}</ref> For example, <math>X(t)</math> or <math>X_t</math> are used to refer to the random variable with the index <math>t</math>, and not the entire stochastic process.<ref name="Lamperti1977page3"/> If the index set is <math>T=[0,\infty)</math>, then one can write, for example, <math>(X_t , t \geq 0)</math> to denote the stochastic process.<ref name="ChaumontYor2012"/>
 
A stochastic process can be denoted, among other ways, by <math>\{X(t)\}_{t\in T} </math>,<ref name="Brémaud2014page120"/> <math>\{X_t\}_{t\in T} </math>,<ref name="Asmussen2003page408"/> <math>\{X_t\}</math><ref name="Lamperti1977page3">,{{cite book|author=John Lamperti|title=Stochastic processes: a survey of the mathematical theory|url=https://books.google.com/books?id=Pd4cvgAACAAJ|year=1977|publisher=Springer-Verlag|isbn=978-3-540-90275-1|page=3}}</ref> <math>\{X(t)\}</math> or simply as <math>X</math> or <math>X(t)</math>, although <math>X(t)</math> is regarded as an [[abuse of notation#Function notation|abuse of function notation]].<ref name="Klebaner2005page55">{{cite book|author=Fima C. Klebaner|title=Introduction to Stochastic Calculus with Applications|url=https://books.google.com/books?id=JYzW0uqQxB0C|year=2005|publisher=Imperial College Press|isbn=978-1-86094-555-7|page=55}}</ref> For example, <math>X(t)</math> or <math>X_t</math> are used to refer to the random variable with the index <math>t</math>, and not the entire stochastic process.<ref name="Lamperti1977page3"/> If the index set is <math>T=[0,\infty)</math>, then one can write, for example, <math>(X_t , t \geq 0)</math> to denote the stochastic process.<ref name="ChaumontYor2012"/>
 +
 +
随机过程可以用<math>\{X(t)\{t}</math>,<ref name=“Brémaud2014page120”/><math>\{X\{t\}在t}</math>中,<ref name=“Asmussen2003page408”/><math>\{X\}</math><ref name=“Lamperti1977page3”>,{引用书籍{作者=John Lamperti | title=随机过程:数学理论综述=https://books.google.com/books?id=pd4cvgaacaj | year=1977 | publisher=Springer Verlag | isbn=978-3-540-90275-1 | page=3}</ref><math>\{X(t)\}</math>或简单地称为<math>X</math>或<math>X(t)</math>,尽管<math>X(t)</math>被视为[[符号滥用#函数表示法|函数表示法滥用]]。<ref name=“Klebaner2005page55”>{cite book | author=Fima C.Klebaner | title=随机微积分及其应用简介=https://books.google.com/books?id=JYzW0uqQxB0C | year=2005 | publisher=Imperial College Press | isbn=978-1-86094-555-7 | page=55}</ref>例如,<math>X(t)</math>或<math>X_t</math>引用具有索引<math>t</math>的随机变量,而不是整个随机过程。<ref name=“Lamperti1977page3”/>如果索引集是<math>t=[0,\infty)</math>,然后,我们可以写,例如,<math>(X\u t,t\geq 0)</math>来表示随机过程。<ref name=“ChaumontYor2012”/>
    
Almost surely, a sample path of a Wiener process is continuous everywhere but nowhere differentiable. It can be considered as a continuous version of the simple random walk. The process arises as the mathematical limit of other stochastic processes such as certain random walks rescaled, which is the subject of Donsker's theorem or invariance principle, also known as the functional central limit theorem.
 
Almost surely, a sample path of a Wiener process is continuous everywhere but nowhere differentiable. It can be considered as a continuous version of the simple random walk. The process arises as the mathematical limit of other stochastic processes such as certain random walks rescaled, which is the subject of Donsker's theorem or invariance principle, also known as the functional central limit theorem.
    
几乎可以肯定,Wiener 过程的样本路径在任何地方都是连续的,但是没有可微的地方。它可以看作是简单随机游动的连续形式。这个过程作为其他随机过程的数学极限出现,例如某些随机游动的重新标度,这是 Donsker 定理或不变性原理的主题,也被称为函数中心极限定理。
 
几乎可以肯定,Wiener 过程的样本路径在任何地方都是连续的,但是没有可微的地方。它可以看作是简单随机游动的连续形式。这个过程作为其他随机过程的数学极限出现,例如某些随机游动的重新标度,这是 Donsker 定理或不变性原理的主题,也被称为函数中心极限定理。
  −
      
==Examples==
 
==Examples==
561

个编辑

导航菜单