更改

跳到导航 跳到搜索
添加35字节 、 2020年9月30日 (三) 16:19
无编辑摘要
第18行: 第18行:  
In dynamical systems, an orbit is called Lyapunov stable if the forward orbit of any point is in a small enough neighborhood or it stays in a small (but perhaps, larger) neighborhood. Various criteria have been developed to prove stability or instability of an orbit. Under favorable circumstances, the question may be reduced to a well-studied problem involving eigenvalues of matrices. A more general method involves Lyapunov functions. In practice, any one of a number of different stability criteria are applied.
 
In dynamical systems, an orbit is called Lyapunov stable if the forward orbit of any point is in a small enough neighborhood or it stays in a small (but perhaps, larger) neighborhood. Various criteria have been developed to prove stability or instability of an orbit. Under favorable circumstances, the question may be reduced to a well-studied problem involving eigenvalues of matrices. A more general method involves Lyapunov functions. In practice, any one of a number of different stability criteria are applied.
   −
在动力系统中,如果任一点的前向轨道处于一个足够小的邻域或者它处于一个较小的邻域(但也许是较大的邻域) ,则称其为李雅普诺夫稳定。已经制定了各种标准来证明轨道的稳定性或不稳定性。在有利的条件下,这个问题可以简化为一个涉及矩阵特征值的研究很好的问题。一个更一般的方法涉及李雅普诺夫函数。在实践中,任何一个不同的稳定性标准是适用的。
+
在动力系统中,如果一个轨道上任意点的前向轨道处于一个足够小的邻域内,或者这个轨道处于一个较小的邻域(但可能是较大的邻域)内,则称其为李雅普诺夫稳定。有各种标准来证明轨道的稳定性或不稳定性。在有利的条件下,这个问题可以简化为一个涉及矩阵特征值的问题,而这已经有很多研究。更一般的方法涉及李雅普诺夫函数。在实践中,很多稳定性标准中的任何一个都是适用的。
     
320

个编辑

导航菜单