更改

跳到导航 跳到搜索
无编辑摘要
第266行: 第266行:  
For example, when a machine (not a part of the system) lifts a system upwards, some energy is transferred from the machine to the system. The system's energy increases as work is done on the system and in this particular case, the energy increase of the system is manifested as an increase in the system's gravitational potential energy. Work added to the system increases the Potential Energy of the system:
 
For example, when a machine (not a part of the system) lifts a system upwards, some energy is transferred from the machine to the system. The system's energy increases as work is done on the system and in this particular case, the energy increase of the system is manifested as an increase in the system's gravitational potential energy. Work added to the system increases the Potential Energy of the system:
   −
例如,当一台机器(不是系统的一部分)将系统向上提升时,一些能量就会从机器转移到系统。系统的能量随着系统所做功的增加而增加,在这种特殊的情况下,系统的能量增加表现为系统的重力势能的增加。对系统做的增加了系统的势能:
+
例如,当一台机器(不是系统的一部分)将系统向上提升时,一些能量就会从机器转移到系统。系统的能量随着系统所做功的增加而增加,在这种特殊的情况下,系统的能量增加表现为系统的重力势能的增加。机器将系统向上提升时对系统做的功增加了系统的势能:
 
   --[[用户:趣木木|趣木木]]([[用户讨论:趣木木|讨论]])“对系统做的增加了系统的势能”  需要对全文进行通读 这里少词
 
   --[[用户:趣木木|趣木木]]([[用户讨论:趣木木|讨论]])“对系统做的增加了系统的势能”  需要对全文进行通读 这里少词
   第463行: 第463行:  
A more general form of the third law that applies to a system such as a glass that may have more than one minimum microscopically distinct energy state, or may have a microscopically distinct state that is "frozen in" though not a strictly minimum energy state and not strictly speaking a state of thermodynamic equilibrium, at absolute zero temperature:
 
A more general form of the third law that applies to a system such as a glass that may have more than one minimum microscopically distinct energy state, or may have a microscopically distinct state that is "frozen in" though not a strictly minimum energy state and not strictly speaking a state of thermodynamic equilibrium, at absolute zero temperature:
   −
第三定律的一个更普遍的形式,适用于像玻璃这样的系统,'''<font color="#32CD32">可能有一个以上的微观上截然不同的能量状态,或可能有一个微观上截然不同的“冻结状态”,虽然不是一个严格意义上的的最低能量状态,也不是严格意义上的热力学平衡,</font>'''在绝对零度:
+
第三定律的一个更普遍的形式,适用于像玻璃这样的系统,'''<font color="#32CD32">可能有一个以上的微观上截然不同的能量状态,或可能有一个微观上截然不同的“冻结状态”,虽然不是一个严格意义上的的最低能量状态,也不是严格意义上的热力学平衡,</font>'''在绝对零度的温度下:
 
   --[[用户:趣木木|趣木木]]([[用户讨论:趣木木|讨论]]) “在绝对零度:”  “在绝对零度下”?
 
   --[[用户:趣木木|趣木木]]([[用户讨论:趣木木|讨论]]) “在绝对零度:”  “在绝对零度下”?
   第490行: 第490行:  
Circa 1797, Count Rumford (born Benjamin Thompson) showed that endless mechanical action can generate indefinitely large amounts of heat from a fixed amount of working substance thus challenging the caloric theory of heat, which held that there would be a finite amount of caloric heat/energy in a fixed amount of working substance. The first established thermodynamic principle, which eventually became the second law of thermodynamics, was formulated by Sadi Carnot in 1824. By 1860, as formalized in the works of those such as Rudolf Clausius and William Thomson, two established principles of thermodynamics had evolved, the first principle and the second principle, later restated as thermodynamic laws.  By 1873, for example, thermodynamicist Josiah Willard Gibbs, in his memoir Graphical Methods in the Thermodynamics of Fluids, clearly stated the first two absolute laws of thermodynamics.  Some textbooks throughout the 20th century have numbered the laws differently.  In some fields removed from chemistry, the second law was considered to deal with the efficiency of heat engines only, whereas what was called the third law dealt with entropy increases.  Directly defining zero points for entropy calculations was not considered to be a law.  Gradually, this separation was combined into the second law and the modern third law was widely adopted.
 
Circa 1797, Count Rumford (born Benjamin Thompson) showed that endless mechanical action can generate indefinitely large amounts of heat from a fixed amount of working substance thus challenging the caloric theory of heat, which held that there would be a finite amount of caloric heat/energy in a fixed amount of working substance. The first established thermodynamic principle, which eventually became the second law of thermodynamics, was formulated by Sadi Carnot in 1824. By 1860, as formalized in the works of those such as Rudolf Clausius and William Thomson, two established principles of thermodynamics had evolved, the first principle and the second principle, later restated as thermodynamic laws.  By 1873, for example, thermodynamicist Josiah Willard Gibbs, in his memoir Graphical Methods in the Thermodynamics of Fluids, clearly stated the first two absolute laws of thermodynamics.  Some textbooks throughout the 20th century have numbered the laws differently.  In some fields removed from chemistry, the second law was considered to deal with the efficiency of heat engines only, whereas what was called the third law dealt with entropy increases.  Directly defining zero points for entropy calculations was not considered to be a law.  Gradually, this separation was combined into the second law and the modern third law was widely adopted.
   −
大约在1797年,拉姆福德(出生于本杰明·汤普森)表明,无休止的机械作用可以从固定数量的工作物质中产生无限量的热量,从而挑战了热量理论。该理论认为在固定数量的工作物质中会有有限的热量 / 能量。1824年,萨迪·卡诺建立了第一个热力学原理,也就是后来的热力学第二定律。到1860年,正如鲁道夫 · 克劳修斯和威廉 · 汤姆森等人的著作所正式规定的那样,已经确立的两个热力学原理得到了发展,第一个原理和第二个原理,后来被重新定义为热力学定律。例如,1873年,热力学学家乔赛亚·威拉德·吉布斯在他的回忆录《流体热力学的图解法》中明确阐述了热力学的前两个绝对定律。整个20世纪的一些教科书对这些定律进行了不同的编号。在一些与化学无关的领域,第二定律被认为仅仅处理热机的效率问题,而所谓的第三定律则处理熵的增加问题。'''<font color="#32CD32">直接定义熵计算的零律不被认为是一条定律。</font>'''这种分离逐渐形成了第二定律,现代第三定律被广泛采用。
+
大约在1797年,拉姆福德(出生于本杰明·汤普森)表明,无休止的机械作用可以从固定数量的工作物质中产生无限量的热量,从而挑战了热量理论。该理论认为在固定数量的工作物质中会有有限的热量 / 能量。1824年,萨迪·卡诺建立了第一个热力学原理,也就是后来的热力学第二定律。到1860年,正如鲁道夫 · 克劳修斯和威廉 · 汤姆森等人的著作所正式规定的那样,已经确立的两个热力学原理得到了发展,第一个原理和第二个原理,后来被重新定义为热力学定律。例如,1873年,热力学学家乔赛亚·威拉德·吉布斯在他的回忆录《流体热力学的图解法》中明确阐述了热力学的前两个绝对定律。整个20世纪的一些教科书对这些定律进行了不同的编号。在一些与化学无关的领域,第二定律被认为仅仅处理热机的效率问题,而所谓的第三定律则处理熵增问题。'''<font color="#32CD32">直接定义熵计算的零律不被认为是一条定律。</font>'''这种分离逐渐形成了第二定律,现代第三定律被广泛采用。
 
   --[[用户:趣木木|趣木木]]([[用户讨论:趣木木|讨论]])“熵的增加问题” 更加简明一点?“熵增问题”
 
   --[[用户:趣木木|趣木木]]([[用户讨论:趣木木|讨论]])“熵的增加问题” 更加简明一点?“熵增问题”
  
90

个编辑

导航菜单