The node degrees and the community sizes are distributed according to a power law, with different exponents. The benchmark assumes that both the degree and the community size have power law distributions with different exponents, <math>\gamma</math> and <math>\beta</math>, respectively. <math>N</math> is the number of nodes and the average degree is <math>\langle k \rangle</math>. There is a mixing parameter <math>\mu</math>, which is the average fraction of neighboring nodes of a node that do not belong to any community that the benchmark node belongs to. This parameter controls the fraction of edges that are between communities. | The node degrees and the community sizes are distributed according to a power law, with different exponents. The benchmark assumes that both the degree and the community size have power law distributions with different exponents, <math>\gamma</math> and <math>\beta</math>, respectively. <math>N</math> is the number of nodes and the average degree is <math>\langle k \rangle</math>. There is a mixing parameter <math>\mu</math>, which is the average fraction of neighboring nodes of a node that do not belong to any community that the benchmark node belongs to. This parameter controls the fraction of edges that are between communities. |