第216行: |
第216行: |
| * '''Tail''':<ref name='tail'>More information and examples can be found in the articles [[Heavy-tailed distribution]], [[Long-tailed distribution]], [[fat-tailed distribution]]</ref> the regions close to the bounds of the random variable, if the pmf or pdf are relatively low therein. Usually has the form <math>X > a</math>, <math>X < b</math> or a union thereof. | | * '''Tail''':<ref name='tail'>More information and examples can be found in the articles [[Heavy-tailed distribution]], [[Long-tailed distribution]], [[fat-tailed distribution]]</ref> the regions close to the bounds of the random variable, if the pmf or pdf are relatively low therein. Usually has the form <math>X > a</math>, <math>X < b</math> or a union thereof. |
| 尾巴:如果pmf或pdf相对较低,则靠近随机变量边界的区域。通常形式为X> a,X <b或它们的并集。 | | 尾巴:如果pmf或pdf相对较低,则靠近随机变量边界的区域。通常形式为X> a,X <b或它们的并集。 |
| + | |
| + | --[[用户:普天星相|普天星相]]([[用户讨论:普天星相|讨论]]) 【审校】此句前一半改为“尾部:当pmf或pdf相对较低时,靠近随机变量边界的区域。” |
| | | |
| *'''Head''':<ref name='tail' /> the region where the pmf or pdf is relatively high. Usually has the form <math>a < X < b</math>. | | *'''Head''':<ref name='tail' /> the region where the pmf or pdf is relatively high. Usually has the form <math>a < X < b</math>. |
第222行: |
第224行: |
| * '''[[Expected value]]''' or '''mean''': the [[weighted average]] of the possible values, using their probabilities as their weights; or the continuous analog thereof. | | * '''[[Expected value]]''' or '''mean''': the [[weighted average]] of the possible values, using their probabilities as their weights; or the continuous analog thereof. |
| 期望值或均值:可能值的加权平均值,以其概率作为权重;或其连续类似物。 | | 期望值或均值:可能值的加权平均值,以其概率作为权重;或其连续类似物。 |
| + | |
| + | --[[用户:普天星相|普天星相]]([[用户讨论:普天星相|讨论]]) 【审校】此句“或其连续类似物”改为“或连续随机变量的类似取值。” |
| | | |
| A continuous probability distribution is a probability distribution whose support is an uncountable set, such as an interval in the real line. They are uniquely characterized by a cumulative density function that can be used to calculate the probability for each subset of the support. There are many examples of continuous probability distributions: normal, uniform, chi-squared, and others. | | A continuous probability distribution is a probability distribution whose support is an uncountable set, such as an interval in the real line. They are uniquely characterized by a cumulative density function that can be used to calculate the probability for each subset of the support. There are many examples of continuous probability distributions: normal, uniform, chi-squared, and others. |