更改

跳到导航 跳到搜索
删除2字节 、 2020年10月7日 (三) 13:34
无编辑摘要
第13行: 第13行:  
In data mining and statistics, hierarchical clustering (also called hierarchical cluster analysis or HCA) is a method of cluster analysis which seeks to build a hierarchy of clusters. Strategies for hierarchical clustering generally fall into two types:
 
In data mining and statistics, hierarchical clustering (also called hierarchical cluster analysis or HCA) is a method of cluster analysis which seeks to build a hierarchy of clusters. Strategies for hierarchical clustering generally fall into two types:
   −
在数据挖掘和统计学中,'''<font color="#ff8000"> 层次聚类Hierarchical clustering</font>'''(也被称为层次数据聚类或HCA)是一种数据聚类的方法,它旨在建立一个集群层次结构。'''<font color="#ff8000"> 实现层次聚类Hierarchical clustering</font>'''的策略通常有两种:
+
在数据挖掘和统计学中,'''<font color="#ff8000"> 层次聚类Hierarchical clustering</font>'''(也被称为层次数据聚类或HCA)是一种数据聚类的方法,它旨在建立一个集群层次结构。'''<font color="#ff8000"> 实现层次聚类Hierarchical clustering</font>'''的方法通常有两种:
    
* '''Agglomerative''': This is a "[[Top-down and bottom-up design|bottom-up]]" approach: each observation starts in its own cluster, and pairs of clusters are merged as one moves up the hierarchy.
 
* '''Agglomerative''': This is a "[[Top-down and bottom-up design|bottom-up]]" approach: each observation starts in its own cluster, and pairs of clusters are merged as one moves up the hierarchy.
第56行: 第56行:     
穷举搜索的分裂群集是 < math > mathcal { o }(2 ^ n) </math > ,但是通常使用更快的启发式来选择分裂,比如 k-means。
 
穷举搜索的分裂群集是 < math > mathcal { o }(2 ^ n) </math > ,但是通常使用更快的启发式来选择分裂,比如 k-means。
  −
      
== Cluster dissimilarity 簇异性==
 
== Cluster dissimilarity 簇异性==
526

个编辑

导航菜单