更改

跳到导航 跳到搜索
添加21字节 、 2020年10月11日 (日) 20:09
第97行: 第97行:  
[[Willard Gibbs’ 1873 available energy (free energy) graph, which shows a plane perpendicular to the axis of v (volume) and passing through point A, which represents the initial state of the body. MN is the section of the surface of dissipated energy. Qε and Qη are sections of the planes η = 0 and ε = 0, and therefore parallel to the axes of ε (internal energy) and η (entropy) respectively. AD and AE are the energy and entropy of the body in its initial state, AB and AC its available energy (Gibbs energy) and its capacity for entropy (the amount by which the entropy of the body can be increased without changing the energy of the body or increasing its volume) respectively.]]
 
[[Willard Gibbs’ 1873 available energy (free energy) graph, which shows a plane perpendicular to the axis of v (volume) and passing through point A, which represents the initial state of the body. MN is the section of the surface of dissipated energy. Qε and Qη are sections of the planes η = 0 and ε = 0, and therefore parallel to the axes of ε (internal energy) and η (entropy) respectively. AD and AE are the energy and entropy of the body in its initial state, AB and AC its available energy (Gibbs energy) and its capacity for entropy (the amount by which the entropy of the body can be increased without changing the energy of the body or increasing its volume) respectively.]]
   −
[ Willard Gibbs 1873年的可用能量(自由能)图,它显示了一个垂直于 v (体积)轴和通过点A的平面,A点表示物体的初始状态。MN 是耗散能曲面的交线。Qε 和 Qη 分别是平面''η'' = 0 和 ''ε'' = 0的交线,因此分别与 ε (内能)和 η (熵)轴平行。AD 和 AE 分别是物体初始状态的能量和熵,AB 和 AC 分别是物体的有效能(吉布斯能)和熵的容量(在不改变物体能量或增加物体体积的情况下物体可以增加的熵的量)
+
[ Willard Gibbs 在1873年展示的可用能量(自由能)图以一个垂直于 v (体积)轴和通过点A的平面为例,A点表示物体的初始状态。MN 是耗散能曲面的交线。Qε 和 Qη 分别是平面''η'' = 0 和 ''ε'' = 0的交线,因此分别与 ε (内能)和 η (熵)轴平行。AD 和 AE 分别代表物体初始状态的能量和熵,AB 和 AC 分别代表物体的有效能(吉布斯能)和熵的容量(在不改变物体能量或增加物体体积的情况下物体可以增加的熵的量)
    
There is a physical quantity closely linked to [[Thermodynamic free energy|free energy]] ([[free enthalpy]]), with a unit of entropy and isomorphic to negentropy known in statistics and information theory. In 1873, [[Josiah Willard Gibbs|Willard Gibbs]] created a diagram illustrating the concept of free energy corresponding to [[free enthalpy]]. On the diagram one can see the quantity called [[capacity for entropy]]. This quantity is the amount of entropy that may be increased without changing an internal energy or increasing its volume.<ref>Willard Gibbs, [http://www.ufn.ru/ufn39/ufn39_4/Russian/r394b.pdf A Method of Geometrical Representation of the Thermodynamic Properties of Substances by Means of Surfaces], ''Transactions of the Connecticut Academy'', 382–404 (1873)</ref> In other words, it is a difference between maximum possible, under assumed conditions, entropy and its actual entropy. It corresponds exactly to the definition of negentropy adopted in statistics and information theory. A similar physical quantity was introduced in 1869 by [[François Jacques Dominique Massieu|Massieu]] for the [[isothermal process]]<ref>Massieu, M. F. (1869a). Sur les fonctions caractéristiques des divers fluides. ''C. R. Acad. Sci.'' LXIX:858–862.</ref><ref>Massieu, M. F. (1869b). Addition au precedent memoire sur les fonctions caractéristiques. ''C. R. Acad. Sci.'' LXIX:1057–1061.</ref><ref>Massieu, M. F. (1869), ''Compt. Rend.'' '''69''' (858): 1057.</ref> (both quantities differs just with a figure sign) and then [[Max Planck|Planck]] for the [[Isothermal process|isothermal]]-[[Isobaric process|isobaric]] process.<ref>Planck, M. (1945). ''Treatise on Thermodynamics''. Dover, New York.</ref> More recently, the Massieu–Planck [[thermodynamic potential]], known also as ''[[free entropy]]'', has been shown to play a great role in the so-called entropic formulation of [[statistical mechanics]],<ref>Antoni Planes, Eduard Vives, [http://www.ecm.ub.es/condensed/eduard/papers/massieu/node2.html Entropic Formulation of Statistical Mechanics], Entropic variables and Massieu–Planck functions 2000-10-24 Universitat de Barcelona</ref> applied among the others in molecular biology<ref>John A. Scheilman, [http://www.biophysj.org/cgi/reprint/73/6/2960.pdf Temperature, Stability, and the Hydrophobic Interaction], ''Biophysical Journal'' '''73''' (December 1997), 2960–2964, Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403 USA</ref> and thermodynamic non-equilibrium processes.<ref>Z. Hens and X. de Hemptinne, [https://arxiv.org/pdf/chao-dyn/9604008 Non-equilibrium Thermodynamics approach to Transport Processes in Gas Mixtures], Department of Chemistry, Catholic University of Leuven, Celestijnenlaan 200 F, B-3001 Heverlee, Belgium</ref>
 
There is a physical quantity closely linked to [[Thermodynamic free energy|free energy]] ([[free enthalpy]]), with a unit of entropy and isomorphic to negentropy known in statistics and information theory. In 1873, [[Josiah Willard Gibbs|Willard Gibbs]] created a diagram illustrating the concept of free energy corresponding to [[free enthalpy]]. On the diagram one can see the quantity called [[capacity for entropy]]. This quantity is the amount of entropy that may be increased without changing an internal energy or increasing its volume.<ref>Willard Gibbs, [http://www.ufn.ru/ufn39/ufn39_4/Russian/r394b.pdf A Method of Geometrical Representation of the Thermodynamic Properties of Substances by Means of Surfaces], ''Transactions of the Connecticut Academy'', 382–404 (1873)</ref> In other words, it is a difference between maximum possible, under assumed conditions, entropy and its actual entropy. It corresponds exactly to the definition of negentropy adopted in statistics and information theory. A similar physical quantity was introduced in 1869 by [[François Jacques Dominique Massieu|Massieu]] for the [[isothermal process]]<ref>Massieu, M. F. (1869a). Sur les fonctions caractéristiques des divers fluides. ''C. R. Acad. Sci.'' LXIX:858–862.</ref><ref>Massieu, M. F. (1869b). Addition au precedent memoire sur les fonctions caractéristiques. ''C. R. Acad. Sci.'' LXIX:1057–1061.</ref><ref>Massieu, M. F. (1869), ''Compt. Rend.'' '''69''' (858): 1057.</ref> (both quantities differs just with a figure sign) and then [[Max Planck|Planck]] for the [[Isothermal process|isothermal]]-[[Isobaric process|isobaric]] process.<ref>Planck, M. (1945). ''Treatise on Thermodynamics''. Dover, New York.</ref> More recently, the Massieu–Planck [[thermodynamic potential]], known also as ''[[free entropy]]'', has been shown to play a great role in the so-called entropic formulation of [[statistical mechanics]],<ref>Antoni Planes, Eduard Vives, [http://www.ecm.ub.es/condensed/eduard/papers/massieu/node2.html Entropic Formulation of Statistical Mechanics], Entropic variables and Massieu–Planck functions 2000-10-24 Universitat de Barcelona</ref> applied among the others in molecular biology<ref>John A. Scheilman, [http://www.biophysj.org/cgi/reprint/73/6/2960.pdf Temperature, Stability, and the Hydrophobic Interaction], ''Biophysical Journal'' '''73''' (December 1997), 2960–2964, Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403 USA</ref> and thermodynamic non-equilibrium processes.<ref>Z. Hens and X. de Hemptinne, [https://arxiv.org/pdf/chao-dyn/9604008 Non-equilibrium Thermodynamics approach to Transport Processes in Gas Mixtures], Department of Chemistry, Catholic University of Leuven, Celestijnenlaan 200 F, B-3001 Heverlee, Belgium</ref>
第103行: 第103行:  
There is a physical quantity closely linked to free energy (free enthalpy), with a unit of entropy and isomorphic to negentropy known in statistics and information theory. In 1873, Willard Gibbs created a diagram illustrating the concept of free energy corresponding to free enthalpy. On the diagram one can see the quantity called capacity for entropy. This quantity is the amount of entropy that may be increased without changing an internal energy or increasing its volume. In other words, it is a difference between maximum possible, under assumed conditions, entropy and its actual entropy. It corresponds exactly to the definition of negentropy adopted in statistics and information theory. A similar physical quantity was introduced in 1869 by Massieu for the isothermal process (both quantities differs just with a figure sign) and then Planck for the isothermal-isobaric process. More recently, the Massieu–Planck thermodynamic potential, known also as free entropy, has been shown to play a great role in the so-called entropic formulation of statistical mechanics, applied among the others in molecular biology and thermodynamic non-equilibrium processes.
 
There is a physical quantity closely linked to free energy (free enthalpy), with a unit of entropy and isomorphic to negentropy known in statistics and information theory. In 1873, Willard Gibbs created a diagram illustrating the concept of free energy corresponding to free enthalpy. On the diagram one can see the quantity called capacity for entropy. This quantity is the amount of entropy that may be increased without changing an internal energy or increasing its volume. In other words, it is a difference between maximum possible, under assumed conditions, entropy and its actual entropy. It corresponds exactly to the definition of negentropy adopted in statistics and information theory. A similar physical quantity was introduced in 1869 by Massieu for the isothermal process (both quantities differs just with a figure sign) and then Planck for the isothermal-isobaric process. More recently, the Massieu–Planck thermodynamic potential, known also as free entropy, has been shown to play a great role in the so-called entropic formulation of statistical mechanics, applied among the others in molecular biology and thermodynamic non-equilibrium processes.
   −
存在一个与自由能(<font color="#ff8000">自由焓 free enthalpy</font>)密切相关的物理量,它具有熵的单位并且与统计学和信息论中我们所知的负熵同构。1873年,威拉德·吉布斯创建了一个图表,说明了自由能对应于自由焓的概念。在图表上,我们可以看到称为<font color="#ff8000">熵的容量 capacity for entropy</font>的物理量。这个量表示在不改变<font color="#ff8000">内能 internal energy</font>或增加体积的情况下,可以增加的熵值。换句话说,它是在假定条件下可能的最大熵值与实际熵之间的差异。它正好符合统计学和信息论中负熵的定义。1869年,Massieu 在<font color="#ff8000">等温过程 isothermal process</font>(两个量只有一个图形符号不同)中引入了一个类似的物理量,然后 Planck 引入到<font color="#ff8000">等温-等压 isothermal-isobaric process</font>过程中。最近,Massieu–Planck 热力学势,也被称为自由熵,已被证明在所谓的统计力学熵表述中发挥了重要作用,应用于分子生物学和热力学非平衡过程。
+
存在一个与自由能(<font color="#ff8000">自由焓 free enthalpy</font>)密切相关的物理量,它具有熵的单位并且与我们所知的统计学和信息论中的负熵同构。1873年,威拉德·吉布斯创建了一个图表,说明了自由能对应于自由焓的概念。在图表上,我们可以看到称为<font color="#ff8000">熵的容量 capacity for entropy</font>的物理量。这个量表示在不改变<font color="#ff8000">内能 internal energy</font>体积的情况下可增加的熵值。换句话说,它是在假定条件下可能的最大熵与实际熵之间的差异。它恰好符合统计学和信息论中负熵的定义。1869年,Massieu 在<font color="#ff8000">等温过程 isothermal process</font>(两个量只有一个图形符号不同)中引入了一个类似的物理量,后来 Planck 把这个概念引入到<font color="#ff8000">等温-等压 isothermal-isobaric process</font>过程中。近期,Massieu–Planck 提出的热力学势,也被称为自由熵,已被证明在所谓的统计力学熵表述中发挥了重要作用,应用于分子生物学和热力学非平衡过程。
     
526

个编辑

导航菜单