更改

跳到导航 跳到搜索
删除960字节 、 2020年10月17日 (六) 12:55
第89行: 第89行:  
=== Definition of long-tailed distribution 长尾分布的定义 ===
 
=== Definition of long-tailed distribution 长尾分布的定义 ===
   −
The distribution of a [[random variable]] ''X'' with [[cumulative distribution function|distribution function]] ''F'' is said to have a long right tail<ref name="Asmussen"/> if for all ''t''&nbsp;>&nbsp;0,
+
The distribution of a [[random variable]] ''X'' with [[cumulative distribution function|distribution function]] ''F'' is said to have a long right tail if for all ''t''&nbsp;>&nbsp;0,
    
The distribution of a random variable X with distribution function F is said to have a long right tail[1] if for all t > 0,
 
The distribution of a random variable X with distribution function F is said to have a long right tail[1] if for all t > 0,
第110行: 第110行:  
</math>
 
</math>
   −
  −
  −
  −
  −
F I([0,\infty)) is. Here I([0,\infty)) is the indicator function  of the positive half-line.  Alternatively, a random variable X supported on the real line is subexponential if and only if X^+ = \max(0,X) is subexponential.
  −
  −
F i ([0,infty))是。这里 i ([0,infty))是正半直线的指示函数。或者,实数行上支持的随机变量 x 是子指数当且仅当 x ^ + = max (0,x)是子指数。
  −
  −
  −
All subexponential distributions are long-tailed, but examples can be constructed of long-tailed distributions that are not subexponential.
  −
  −
所有的次指数分布都是长尾分布,但是例子可以由非次指数的长尾分布构造。
      
This has the intuitive interpretation for a right-tailed long-tailed distributed quantity that if the long-tailed quantity exceeds some high level, the probability approaches 1 that it will exceed any other higher level.
 
This has the intuitive interpretation for a right-tailed long-tailed distributed quantity that if the long-tailed quantity exceeds some high level, the probability approaches 1 that it will exceed any other higher level.
    
All long-tailed distributions are heavy-tailed, but the converse is false, and it is possible to construct heavy-tailed distributions that are not long-tailed.
 
All long-tailed distributions are heavy-tailed, but the converse is false, and it is possible to construct heavy-tailed distributions that are not long-tailed.
  −
  −
  −
  −
  −
  −
  −
All commonly used heavy-tailed distributions are subexponential.
  −
  −
所有常用的重尾分布都是次指数分布。
  −
  −
:<math>
  −
  −
\overline{F}(x+t) \sim \overline{F}(x) \quad \mbox{as } x \to \infty. \,
  −
  −
Those that are two-tailed include:
  −
  −
有两条尾巴的包括:
  −
  −
</math>
      
=== Subexponential distributions 长尾分布的定义 ===
 
=== Subexponential distributions 长尾分布的定义 ===
961

个编辑

导航菜单