第129行: |
第129行: |
| | | |
| Subexponentiality is defined in terms of [[Convolution of probability distributions|convolutions of probability distributions]]. For two independent, identically distributed [[random variables]] <math> X_1,X_2</math> with common distribution function <math>F</math> the convolution of <math>F</math> with itself, <math>F^{*2}</math> is convolution square, using [[Lebesgue–Stieltjes integration]], by: | | Subexponentiality is defined in terms of [[Convolution of probability distributions|convolutions of probability distributions]]. For two independent, identically distributed [[random variables]] <math> X_1,X_2</math> with common distribution function <math>F</math> the convolution of <math>F</math> with itself, <math>F^{*2}</math> is convolution square, using [[Lebesgue–Stieltjes integration]], by: |
| + | |
| + | Subexponentiality is defined in terms of [[Convolution of probability distributions|convolutions of probability distributions]]. For two independent, identically distributed [[random variables]] <math> X_1,X_2</math> with common distribution function <math>F</math> the convolution of <math>F</math> with itself, <math>F^{*2}</math> is convolution square, using [[Lebesgue–Stieltjes integration]], by: |
| + | |
| + | 次指数性是根据概率分布的卷积定义的。对于具有共同分布函数F的两个独立的,分布均匀的随机变量X1,X2,F与自身的卷积,F2是卷积平方,使用Lebesgue–Stieltjes积分,方法如下: |
| + | |
| | | |
| :<math> | | :<math> |
| \Pr[X_1+X_2 \leq x] = F^{*2}(x) = \int_{0}^x F(x-y)\,dF(y), | | \Pr[X_1+X_2 \leq x] = F^{*2}(x) = \int_{0}^x F(x-y)\,dF(y), |
| </math> | | </math> |
| + | |
| + | |
| and the ''n''-fold convolution <math>F^{*n}</math> is defined inductively by the rule: | | and the ''n''-fold convolution <math>F^{*n}</math> is defined inductively by the rule: |
| + | n倍卷积<math>F^{*n}</math>定义如下: |
| + | |
| :<math> | | :<math> |
| F^{*n}(x) = \int_{0}^x F(x-y)\,dF^{*n-1}(y). | | F^{*n}(x) = \int_{0}^x F(x-y)\,dF^{*n-1}(y). |
第141行: |
第150行: |
| | | |
| A distribution <math>F</math> on the positive half-line is subexponential<ref name="Asmussen"/><ref>{{Cite web|url=https://www.researchgate.net/publication/242637603_A_Theorem_on_Sums_of_Independent_Positive_Random_Variables_and_Its_Applications_to_Branching_Random_Processes|title=A Theorem on Sums of Independent Positive Random Variables and Its Applications to Branching Random Processes|last=Chistyakov|first=V. P.|date=1964|website=ResearchGate|language=en|archive-url=|archive-date=|access-date=April 7, 2019}}</ref><ref>{{Cite web|url=https://projecteuclid.org/download/pdf_1/euclid.aop/1176996225|title=The Class of Subexponential Distributions|last=Teugels|first=Jozef L.|authorlink=|date=1975|website=|publisher=Annals of Probability|publication-place=[[KU Leuven|University of Louvain]]|archive-url=|archive-date=|access-date=April 7, 2019}}</ref> if | | A distribution <math>F</math> on the positive half-line is subexponential<ref name="Asmussen"/><ref>{{Cite web|url=https://www.researchgate.net/publication/242637603_A_Theorem_on_Sums_of_Independent_Positive_Random_Variables_and_Its_Applications_to_Branching_Random_Processes|title=A Theorem on Sums of Independent Positive Random Variables and Its Applications to Branching Random Processes|last=Chistyakov|first=V. P.|date=1964|website=ResearchGate|language=en|archive-url=|archive-date=|access-date=April 7, 2019}}</ref><ref>{{Cite web|url=https://projecteuclid.org/download/pdf_1/euclid.aop/1176996225|title=The Class of Subexponential Distributions|last=Teugels|first=Jozef L.|authorlink=|date=1975|website=|publisher=Annals of Probability|publication-place=[[KU Leuven|University of Louvain]]|archive-url=|archive-date=|access-date=April 7, 2019}}</ref> if |
| + | |
| + | 尾分布函数<math>\overline{F}</math>定义为<math>\overline{F}(x) = 1-F(x)</math>。 |
| + | 如果满足以下条件,则正半线上的分布<math>F</math>为次指数: |
| | | |
| :<math> | | :<math> |
第147行: |
第159行: |
| | | |
| This implies<ref name="Embrechts">{{cite book |author1=Embrechts P. |author2=Klueppelberg C. |author3=Mikosch T. |title=Modelling extremal events for insurance and finance |publisher=Springer | series = Stochastic Modelling and Applied Probability|location=Berlin |year=1997 | volume=33| doi = 10.1007/978-3-642-33483-2|isbn=978-3-642-08242-9 }}</ref> that, for any <math>n \geq 1</math>, | | This implies<ref name="Embrechts">{{cite book |author1=Embrechts P. |author2=Klueppelberg C. |author3=Mikosch T. |title=Modelling extremal events for insurance and finance |publisher=Springer | series = Stochastic Modelling and Applied Probability|location=Berlin |year=1997 | volume=33| doi = 10.1007/978-3-642-33483-2|isbn=978-3-642-08242-9 }}</ref> that, for any <math>n \geq 1</math>, |
| + | 这蕴含着,对于任何<math>n \geq 1</math>, |
| | | |
| :<math> | | :<math> |