第61行: |
第61行: |
| If a disordered state is not in thermodynamic equilibrium, one speaks of quenched disorder. For instance, a glass is obtained by quenching (supercooling) a liquid. By extension, other quenched states are called spin glass, orientational glass. In some contexts, the opposite of quenched disorder is annealed disorder. | | If a disordered state is not in thermodynamic equilibrium, one speaks of quenched disorder. For instance, a glass is obtained by quenching (supercooling) a liquid. By extension, other quenched states are called spin glass, orientational glass. In some contexts, the opposite of quenched disorder is annealed disorder. |
| | | |
− | 如果一个无序的状态不存在于'''<font color="#ff8000">热力学平衡 Thermodynamic Equilibrium</font>''',那么就是'''淬火无序'''。例如,'''<font color="#ff8000">玻璃 Glass</font>'''是通过淬火('''<font color="#ff8000">过冷却 Supercooling</font>''')液体获得的。推而广之,其它淬火态称为'''<font color="#ff8000">自旋玻璃 Spin Glass</font>'''、'''<font color="#ff8000">取向玻璃 Orientational Glass</font>'''。在某些情况下,淬火无序的对立面是'''退火无序'''。 | + | 如果一个无序的状态不存在于'''<font color="#ff8000">热力学平衡 Thermodynamic Equilibrium</font>''',那么就是'''淬致无序'''。例如,'''<font color="#ff8000">玻璃 Glass</font>'''是通过淬火('''<font color="#ff8000">过冷却 Supercooling</font>''')液体获得的。推而广之,其它淬火态称为'''<font color="#ff8000">自旋玻璃 Spin Glass</font>'''、'''<font color="#ff8000">取向玻璃 Orientational Glass</font>'''。在某些情况下,淬致无序的对立面是'''退火无序'''。 |
| | | |
| | | |
第111行: |
第111行: |
| Besides structural order, one may consider charge ordering, spin ordering, magnetic ordering, and compositional ordering. Magnetic ordering is observable in neutron diffraction. | | Besides structural order, one may consider charge ordering, spin ordering, magnetic ordering, and compositional ordering. Magnetic ordering is observable in neutron diffraction. |
| | | |
− | 除了结构有序外,还可以考虑'''<font color="#ff8000">电荷有序 Charge Ordering</font>'''、'''<font color="#ff8000">自旋 Spin</font>'''有序、'''<font color="#ff8000">磁有序 Magnetic Ordering</font>'''和成分有序。磁顺序可以在'''<font color="#ff8000">中子衍射 Neutron Diffraction</font>'''中观察到。 | + | 除了结构有序外,还可以考虑'''<font color="#ff8000">电荷有序 Charge Ordering</font>'''、'''<font color="#ff8000">自旋 Spin</font>'''有序、'''<font color="#ff8000">磁有序 Magnetic Ordering</font>'''和成分有序。磁有序可以在'''<font color="#ff8000">中子衍射 Neutron Diffraction</font>'''中观察到。 |
| | | |
| | | |
第181行: |
第181行: |
| This function is equal to unity when <math>x=x'</math> and decreases as the distance <math>|x-x'|</math> increases. Typically, it decays exponentially to zero at large distances, and the system is considered to be disordered. But if the correlation function decays to a constant value at large <math>|x-x'|</math> then the system is said to possess long-range order. If it decays to zero as a power of the distance then it is called quasi-long-range order (for details see Chapter 11 in the textbook cited below. See also Berezinskii–Kosterlitz–Thouless transition). Note that what constitutes a large value of <math>|x-x'|</math> is understood in the sense of asymptotics. | | This function is equal to unity when <math>x=x'</math> and decreases as the distance <math>|x-x'|</math> increases. Typically, it decays exponentially to zero at large distances, and the system is considered to be disordered. But if the correlation function decays to a constant value at large <math>|x-x'|</math> then the system is said to possess long-range order. If it decays to zero as a power of the distance then it is called quasi-long-range order (for details see Chapter 11 in the textbook cited below. See also Berezinskii–Kosterlitz–Thouless transition). Note that what constitutes a large value of <math>|x-x'|</math> is understood in the sense of asymptotics. |
| | | |
− | 当数学 x’ / math 时,这个函数等于单位数,当距离数学 | x-x’ / math 增加时,这个函数减少。通常情况下,它在很大距离上衰减为零,系统被认为是无序的。但是如果相关函数(量子场论)衰变为一个常数值,那么这个系统就被认为具有长程序。如果它衰变为零作为距离的幂,那么它被称为准长程序(详见下面引用的教科书第11章)。参见 Berezinskii-Kosterlitz-Thouless 过渡)。请注意,构成数学 | x-x’ | / math 的大值的东西可以理解为渐近性。
| + | 当<math>x=x'</math>时,这个函数等于单位数,当距离<math>|x-x'|</math>增加时,这个函数减少。通常情况下,它在很大距离上'''<font color="#ff8000">呈指数衰减 Decays Exponentially</font>'''为零,系统被认为是无序的。但是如果相关函数(量子场论)衰变为一个常数值,那么这个系统就被认为具有长程序。如果它衰变为零作为距离的幂,那么它被称为准长程序(详见下面引用的教科书第11章)。参见'''<font color="#ff8000">Berezinskii–Kosterlitz–Thouless过渡 Berezinskii–Kosterlitz–Thouless Transition</font>''')。请注意,构成较大的<math>|x-x'|</math>的值可以理解为渐近性。 |
| | | |
| | | |
第191行: |
第191行: |
| ==Quenched disorder== | | ==Quenched disorder== |
| | | |
− | 熄灭的无序
| + | 淬致无序 |
| | | |
| | | |