更改

跳到导航 跳到搜索
添加1,998字节 、 2020年10月17日 (六) 22:32
第198行: 第198行:     
==Common heavy-tailed distributions==
 
==Common heavy-tailed distributions==
  −
      
All commonly used heavy-tailed distributions are subexponential.<ref name="Embrechts"/>
 
All commonly used heavy-tailed distributions are subexponential.<ref name="Embrechts"/>
  −
      
Those that are one-tailed include:
 
Those that are one-tailed include:
 +
*the [[Pareto distribution]];
 +
*the [[Log-normal distribution]];
 +
*the [[Lévy distribution]];
 +
*the [[Weibull distribution]] with shape parameter greater than 0 but less than 1;
 +
*the [[Burr distribution]];
 +
*the [[log-logistic distribution]];
 +
*the [[log-gamma distribution]];
 +
*the [[Fréchet distribution]];
 +
*the [[log-Cauchy distribution]], sometimes described as having a "super-heavy tail" because it exhibits [[logarithmic growth|logarithmic decay]] producing a heavier tail than the Pareto distribution.<ref>{{cite book|title=Laws of Small Numbers: Extremes and Rare Events|author=Falk, M., Hüsler, J. & Reiss, R.|page=80|year=2010|publisher=Springer|isbn=978-3-0348-0008-2}}</ref><ref>{{cite web|title=Statistical inference for heavy and super-heavy tailed distributions|url=http://docentes.deio.fc.ul.pt/fragaalves/SuperHeavy.pdf|author=Alves, M.I.F., de Haan, L. & Neves, C.|date=March 10, 2006|access-date=November 1, 2011|archive-url=https://web.archive.org/web/20070623175435/http://docentes.deio.fc.ul.pt/fragaalves/SuperHeavy.pdf|archive-date=June 23, 2007|url-status=dead}}</ref>
   −
*the [[Pareto distribution]];
+
Those that are two-tailed include:
 +
*The [[Cauchy distribution]], itself a special case of both the stable distribution and the t-distribution;
 +
*The family of  [[stable distributions]],<ref>{{cite web |author=John P. Nolan | title=Stable Distributions: Models for Heavy Tailed Data| year=2009 | url=http://academic2.american.edu/~jpnolan/stable/chap1.pdf | accessdate=2009-02-21}}</ref> excepting the special case of the normal distribution within that family. Some stable distributions are one-sided (or supported by a half-line), see e.g. [[Lévy distribution]]. See also ''[[financial models with long-tailed distributions and volatility clustering]]''.
 +
*The [[Student's t-distribution|t-distribution]].
 +
*The skew lognormal cascade distribution.<ref>{{cite web | author=Stephen Lihn | title=Skew Lognormal Cascade Distribution | year=2009 | url=http://www.skew-lognormal-cascade-distribution.org/ | access-date=2009-06-12 | archive-url=https://web.archive.org/web/20140407075213/http://www.skew-lognormal-cascade-distribution.org/ | archive-date=2014-04-07 | url-status=dead }}</ref>
   −
*the [[Log-normal distribution]];
     −
*the [[Lévy distribution]];
     −
*the [[Weibull distribution]] with shape parameter greater than 0 but less than 1;
      
Category:Tails of probability distributions
 
Category:Tails of probability distributions
961

个编辑

导航菜单