第3行: |
第3行: |
| |description=非平衡态热力学,物理概念,热力学分支 | | |description=非平衡态热力学,物理概念,热力学分支 |
| }} | | }} |
− | '''非平衡态热力学'''是热力学的一个分支,研究某些不处于热力学平衡中的物理系统。但是这些系统可以用一些变量(非平衡态变量)来描述,这些变量来源于用来描述热力学平衡系统的变量的外推。非平衡态热力学与输运过程和化学反应速率相关。它依赖于被认为是或多或少接近热力学平衡的东西。 | + | '''非平衡态热力学'''是热力学的一个分支,研究某些不处于热力学平衡中的物理系统。但是这些系统可以用一些变量(非平衡态变量)来描述,这些变量来源于用来描述热力学平衡系统的变量的外推。非平衡态热力学与输运过程和化学反应速率相关。它依赖于被认为是或多或少接近热力学平衡的东西。 |
| + | |
| | | |
| 几乎所有在自然界中发现的系统都不是在热力学平衡中,因为它们正在随着时间变化或者可以被触发而发生变化,并且不断地和其他系统交换物质和能量以及参与化学反应。然而,某些系统和过程在某些程度上足够接近于热力学平衡态,允许目前已有的非平衡态热力学对其进行有用的精确描述。然而,许多自然系统和过程由于非变分动力学的存在,使得自由能的概念不存在,因此总是远远超出非平衡热力学方法的范围。<ref>{{cite journal |last1=Bodenschatz |first1=Eberhard |last2=Cannell |first2=David S. |last3=de Bruyn |first3=John R. |last4=Ecke |first4=Robert |last5=Hu |first5=Yu-Chou |last6=Lerman |first6=Kristina |last7=Ahlers |first7=Guenter |title=Experiments on three systems with non-variational aspects |journal=Physica D: Nonlinear Phenomena |date=December 1992 |volume=61 |issue=1–4 |pages=77–93 |doi=10.1016/0167-2789(92)90150-L}}</ref> | | 几乎所有在自然界中发现的系统都不是在热力学平衡中,因为它们正在随着时间变化或者可以被触发而发生变化,并且不断地和其他系统交换物质和能量以及参与化学反应。然而,某些系统和过程在某些程度上足够接近于热力学平衡态,允许目前已有的非平衡态热力学对其进行有用的精确描述。然而,许多自然系统和过程由于非变分动力学的存在,使得自由能的概念不存在,因此总是远远超出非平衡热力学方法的范围。<ref>{{cite journal |last1=Bodenschatz |first1=Eberhard |last2=Cannell |first2=David S. |last3=de Bruyn |first3=John R. |last4=Ecke |first4=Robert |last5=Hu |first5=Yu-Chou |last6=Lerman |first6=Kristina |last7=Ahlers |first7=Guenter |title=Experiments on three systems with non-variational aspects |journal=Physica D: Nonlinear Phenomena |date=December 1992 |volume=61 |issue=1–4 |pages=77–93 |doi=10.1016/0167-2789(92)90150-L}}</ref> |
| | | |
− | 对非平衡系统的热力学研究比平衡态热力学研究需要更普适的概念。非平衡态热力学和平衡态热力学之间的一个根本区别在于非均匀系统的行为,这就要求对反应速率有研究,而这一点在均匀系统的平衡态热力学中没有考虑,下面将讨论这一点。另一个基且非常重要的区别是,在一般情况下,很难或者不可能用宏观量来定义非热力学平衡系统在瞬时的熵; 只有在某些精心选择的特殊情况下加入一些有用的近似才能定义熵,即局部热平衡。<ref name="Grandy 2008">Grandy, W.T., Jr (2008).</ref><ref name="Lebon Jou Casas-Vázquez 2008">Lebon, G., Jou, D., Casas-Vázquez, J. (2008). ''Understanding Non-equilibrium Thermodynamics: Foundations, Applications, Frontiers'', Springer-Verlag, Berlin, e-.</ref>
| + | |
| + | 对非平衡系统的热力学研究比平衡态热力学研究需要更普适的概念。非平衡态热力学和平衡态热力学之间的一个根本区别在于非均匀系统的行为,这就要求对反应速率有研究,而这一点在均匀系统的平衡态热力学中没有考虑,下面将讨论这一点。另一个基且非常重要的区别是:在一般情况下,很难或者不可能用宏观量来定义非热力学平衡系统在瞬时的熵;只有在某些精心选择的特殊情况下加入一些有用的近似才能定义熵,即'''局部热平衡'''。<ref name="Grandy 2008">Grandy, W.T., Jr (2008).</ref><ref name="Lebon Jou Casas-Vázquez 2008">Lebon, G., Jou, D., Casas-Vázquez, J. (2008). ''Understanding Non-equilibrium Thermodynamics: Foundations, Applications, Frontiers'', Springer-Verlag, Berlin, e-.</ref> |
| | | |
| | | |
第15行: |
第17行: |
| | | |
| 平衡态热力学和非平衡态热力学之间存在一个巨大的区别:平衡态热力学忽略了物理过程的时间进程;相反,非平衡态热力学试图不断详细地描述物理过程的时间进程。 | | 平衡态热力学和非平衡态热力学之间存在一个巨大的区别:平衡态热力学忽略了物理过程的时间进程;相反,非平衡态热力学试图不断详细地描述物理过程的时间进程。 |
| + | |
| | | |
| 平衡态热力学把它的研究范围局限于具有热力学平衡的初态和末态的过程,该过程的时间进程被有意地忽略。因此,平衡态热力学允许物理过程经历远离热力学平衡的状态,这些状态甚至不能用非平衡态热力学所允许的变量来描述,<ref name="EY 5">Elliott H. Lieb|Lieb, E.H., Jakob Yngvason|Yngvason, J. (1999), p. 5.</ref> 比如温度和压强的时间变化率。<ref>Gyarmati, I. (1967/1970), pp. 8–12.</ref> <ref name="EY 5"/> 例如,在平衡态热力学中,一个过程甚至可以包括一个非平衡态热力学无法描述的剧烈爆炸。然而,为了理论发展,平衡态热力学使用了“准静态过程”的理想化概念。准静态过程是一种概念上(永恒的、物理上不可能的)沿着热力学平衡状态连续路径的平滑数学过程。它是微分几何的练习,而不是现实中可能发生的过程。<ref>Herbert Callen|Callen, H.B. (1960/1985), § 4–2.</ref> | | 平衡态热力学把它的研究范围局限于具有热力学平衡的初态和末态的过程,该过程的时间进程被有意地忽略。因此,平衡态热力学允许物理过程经历远离热力学平衡的状态,这些状态甚至不能用非平衡态热力学所允许的变量来描述,<ref name="EY 5">Elliott H. Lieb|Lieb, E.H., Jakob Yngvason|Yngvason, J. (1999), p. 5.</ref> 比如温度和压强的时间变化率。<ref>Gyarmati, I. (1967/1970), pp. 8–12.</ref> <ref name="EY 5"/> 例如,在平衡态热力学中,一个过程甚至可以包括一个非平衡态热力学无法描述的剧烈爆炸。然而,为了理论发展,平衡态热力学使用了“准静态过程”的理想化概念。准静态过程是一种概念上(永恒的、物理上不可能的)沿着热力学平衡状态连续路径的平滑数学过程。它是微分几何的练习,而不是现实中可能发生的过程。<ref>Herbert Callen|Callen, H.B. (1960/1985), § 4–2.</ref> |
| + | |
| | | |
| 另一方面,非平衡态热力学试图描述连续的时间进程,这需要它的状态变量与平衡态热力学的状态变量之间有非常密切的联系。这极大地限制了非平衡态热力学的范围,并对其概念框架提出了严格的要求。<ref>Glansdorff, P., Prigogine, I. (1971), Ch. {{math|II}},§ 2.</ref> | | 另一方面,非平衡态热力学试图描述连续的时间进程,这需要它的状态变量与平衡态热力学的状态变量之间有非常密切的联系。这极大地限制了非平衡态热力学的范围,并对其概念框架提出了严格的要求。<ref>Glansdorff, P., Prigogine, I. (1971), Ch. {{math|II}},§ 2.</ref> |
| + | |
| | | |
| ===非平衡态变量=== | | ===非平衡态变量=== |
第29行: |
第34行: |
| 非平衡态热力学是一项正在进行的工作,而不是一座已经建立的大厦。本文试图勾勒出一些方法和一些重要的概念。 | | 非平衡态热力学是一项正在进行的工作,而不是一座已经建立的大厦。本文试图勾勒出一些方法和一些重要的概念。 |
| | | |
− | 非平衡态热力学中一些特别重要的概念包括能量耗散的时间速率(Rayleigh 1873<ref name="Rayleigh 1873">{{Cite journal | last1 = Strutt | first1 = J. W. | doi = 10.1112/plms/s1-4.1.357 | title = Some General Theorems relating to Vibrations | journal = Proceedings of the London Mathematical Society | year = 1871 | volume = s1-4 | pages = 357–368 | url = https://zenodo.org/record/1447754 }}</ref> ,Onsager 1931<ref name="Onsager 1931 I">{{Cite journal | doi = 10.1103/PhysRev.37.405 | last1 = Onsager | first1 = L. | year = 1931 | title = Reciprocal relations in irreversible processes, I | url = | journal = Physical Review | volume = 37 | issue = 4| pages = 405–426 |bibcode = 1931PhRv...37..405O | doi-access = free }}</ref> <ref name="Gyarmati 1970">Gyarmati, I. (1967/1970).</ref><ref name="Lavenda 1978">Lavenda, B.H. (1978). ''Thermodynamics of Irreversible Processes'', Macmillan, London.</ref>)、<ref name="Onsager 1931 I"/><ref>Gyarmati, I. (1967/1970), pages 4-14.</ref><ref name="Ziegler 1983">Ziegler, H., (1983). ''An Introduction to Thermomechanics'', North-Holland, Amsterdam.</ref><ref name="Balescu">Balescu, R. (1975), Wiley-Interscience, New York, Section 3.2, pages 64-72.</ref> 熵产生速率(Onsager 1931)、热力学场、耗散结构和非线性动力结构。
| + | 非平衡态热力学中一些特别重要的概念,包括能量耗散的时间速率(Rayleigh 1873<ref name="Rayleigh 1873">{{Cite journal | last1 = Strutt | first1 = J. W. | doi = 10.1112/plms/s1-4.1.357 | title = Some General Theorems relating to Vibrations | journal = Proceedings of the London Mathematical Society | year = 1871 | volume = s1-4 | pages = 357–368 | url = https://zenodo.org/record/1447754 }}</ref> ,Onsager 1931<ref name="Onsager 1931 I">{{Cite journal | doi = 10.1103/PhysRev.37.405 | last1 = Onsager | first1 = L. | year = 1931 | title = Reciprocal relations in irreversible processes, I | url = | journal = Physical Review | volume = 37 | issue = 4| pages = 405–426 |bibcode = 1931PhRv...37..405O | doi-access = free }}</ref> <ref name="Gyarmati 1970">Gyarmati, I. (1967/1970).</ref><ref name="Lavenda 1978">Lavenda, B.H. (1978). ''Thermodynamics of Irreversible Processes'', Macmillan, London.</ref>)、<ref name="Onsager 1931 I"/><ref>Gyarmati, I. (1967/1970), pages 4-14.</ref><ref name="Ziegler 1983">Ziegler, H., (1983). ''An Introduction to Thermomechanics'', North-Holland, Amsterdam.</ref><ref name="Balescu">Balescu, R. (1975), Wiley-Interscience, New York, Section 3.2, pages 64-72.</ref> 熵产生速率(Onsager 1931)、热力学场、耗散结构和非线性动力结构。 |
| + | |
| | | |
| 一个有趣的问题是非平衡定态的热力学研究,其中熵产生和一些流是非零的,但没有物理量随时间变化。 | | 一个有趣的问题是非平衡定态的热力学研究,其中熵产生和一些流是非零的,但没有物理量随时间变化。 |
| + | |
| | | |
| 非平衡态热力学的一个早期方法有时被称为经典不可逆热力学。<ref name="Lebon Jou Casas-Vázquez 2008"/>研究非平衡态热力学还有其他方法,如扩展不可逆热力学和广义热力学,<ref name="Lebon Jou Casas-Vázquez 2008"/><ref name="JCVL 1993"/><ref>Eu, B.C. (2002).</ref> 但在本文中很少涉及。 | | 非平衡态热力学的一个早期方法有时被称为经典不可逆热力学。<ref name="Lebon Jou Casas-Vázquez 2008"/>研究非平衡态热力学还有其他方法,如扩展不可逆热力学和广义热力学,<ref name="Lebon Jou Casas-Vázquez 2008"/><ref name="JCVL 1993"/><ref>Eu, B.C. (2002).</ref> 但在本文中很少涉及。 |
| + | |
| | | |
| ===实验室条件下物质的准无辐射非平衡热力学=== | | ===实验室条件下物质的准无辐射非平衡热力学=== |
| | | |
| 根据 Wildt <ref name="Wildt 1972">{{Cite journal |last=Wildt |first=R. |year=1972 |title=Thermodynamics of the gray atmosphere. IV. Entropy transfer and production |journal=Astrophysical Journal |volume=174 |issue= |pages=69–77 |doi=10.1086/151469 |bibcode=1972ApJ...174...69W}}</ref>(同时参考 Essex<ref name="Essex 1984a">{{Cite journal |last=Essex |first=C. |year=1984a |title=Radiation and the irreversible thermodynamics of climate |journal=Journal of the Atmospheric Sciences |volume=41 |issue=12 |pages=1985–1991 |doi=10.1175/1520-0469(1984)041<1985:RATITO>2.0.CO;2 |bibcode = 1984JAtS...41.1985E |doi-access=free }}.</ref><ref name="Essex 1984b">{{Cite journal |last=Essex |first=C. |year=1984b |title=Minimum entropy production in the steady state and radiative transfer |journal=Astrophysical Journal |volume=285 |issue= |pages=279–293 |doi=10.1086/162504 |bibcode=1984ApJ...285..279E}}</ref><ref name="Essex 1984c">{{Cite journal |last=Essex |first=C. |year=1984c |title=Radiation and the violation of bilinearity in the irreversible thermodynamics of irreversible processes |journal=Planetary and Space Science |volume=32 |pages=1035–1043 |doi=10.1016/0032-0633(84)90060-6 |bibcode = 1984P&SS...32.1035E |issue=8 }}</ref>)的说法,当前版本的非平衡态热力学忽略了辐射热; 他们之所以可以这样做,是因为他们参照的是实验室条件下的物质数量,而实验室条件下的物质温度远低于恒星的温度。在实验室温度下,在实验室数量的物质中,热辐射很弱,几乎可以忽略不计。但是,例如大气物理学关注的是占据以立方公里计的大量物质,它们作为一个整体,不在实验室数量的范围内,那么热辐射就不能被忽视。 | | 根据 Wildt <ref name="Wildt 1972">{{Cite journal |last=Wildt |first=R. |year=1972 |title=Thermodynamics of the gray atmosphere. IV. Entropy transfer and production |journal=Astrophysical Journal |volume=174 |issue= |pages=69–77 |doi=10.1086/151469 |bibcode=1972ApJ...174...69W}}</ref>(同时参考 Essex<ref name="Essex 1984a">{{Cite journal |last=Essex |first=C. |year=1984a |title=Radiation and the irreversible thermodynamics of climate |journal=Journal of the Atmospheric Sciences |volume=41 |issue=12 |pages=1985–1991 |doi=10.1175/1520-0469(1984)041<1985:RATITO>2.0.CO;2 |bibcode = 1984JAtS...41.1985E |doi-access=free }}.</ref><ref name="Essex 1984b">{{Cite journal |last=Essex |first=C. |year=1984b |title=Minimum entropy production in the steady state and radiative transfer |journal=Astrophysical Journal |volume=285 |issue= |pages=279–293 |doi=10.1086/162504 |bibcode=1984ApJ...285..279E}}</ref><ref name="Essex 1984c">{{Cite journal |last=Essex |first=C. |year=1984c |title=Radiation and the violation of bilinearity in the irreversible thermodynamics of irreversible processes |journal=Planetary and Space Science |volume=32 |pages=1035–1043 |doi=10.1016/0032-0633(84)90060-6 |bibcode = 1984P&SS...32.1035E |issue=8 }}</ref>)的说法,当前版本的非平衡态热力学忽略了辐射热; 他们之所以可以这样做,是因为他们参照的是实验室条件下的物质数量,而实验室条件下的物质温度远低于恒星的温度。在实验室温度下,在实验室数量的物质中,热辐射很弱,几乎可以忽略不计。但是,例如大气物理学关注的是占据以立方公里计的大量物质,它们作为一个整体,不在实验室数量的范围内,那么热辐射就不能被忽视。 |
| + | |
| | | |
| ===局部平衡热力学=== | | ===局部平衡热力学=== |