严格分析此类系统的一种方法是研究远离平衡的系统的稳定性。接近平衡点时,我们可以证明存在[[李亚普诺夫函数 Lyapunov function]],它确保熵趋于稳定的最大值。波动在固定点附近被阻尼,宏观描述就已足够。然而,远离平衡的稳定性不再是一个普遍的性质,并且可以被打破。在化学系统中,这是在存在自催化反应的情况下发生的,例如在'''布鲁塞尔模型 Brusselator'''中。如果系统被驱动超过一定的阈值,振荡不再被阻尼,而是可能被放大。从数学上讲,这相当于一个'''霍普夫分岔 Hopf bifurcation''',其中一个参数增加超过一定的值会导致'''极限环行为 limit cycle behavior'''。如果通过反应扩散方程来考虑空间效应,就会产生长程关联和'''空间有序模式 spatially ordered patterns''',<ref name="LemarchandNicolis">{{cite journal|last1=Lemarchand|first1=H.|last2=Nicolis|first2=G.|title=Long range correlations and the onset of chemical instabilities|journal=Physica|date=1976|volume=82A|issue=4|pages=521–542|doi=10.1016/0378-4371(76)90079-0|bibcode=1976PhyA...82..521L}}</ref>例如'''BZ反应 Belousov–Zhabotinsky reaction'''。由于不可逆过程而产生的具有这种物质动态状态的系统是耗散结构。
+
严格分析此类系统的一种方法是研究远离平衡的系统的稳定性。接近平衡点时,我们可以证明存在[[李雅普诺夫函数 Lyapunov function]],它确保熵趋于稳定的最大值。波动在固定点附近被阻尼,宏观描述就已足够。然而,远离平衡的稳定性不再是一个普遍的性质,并且可以被打破。在化学系统中,这是在存在自催化反应的情况下发生的,例如在'''布鲁塞尔模型 Brusselator'''中。如果系统被驱动超过一定的阈值,振荡不再被阻尼,而是可能被放大。从数学上讲,这相当于一个'''霍普夫分岔 Hopf bifurcation''',其中一个参数增加超过一定的值会导致'''极限环行为 limit cycle behavior'''。如果通过反应扩散方程来考虑空间效应,就会产生长程关联和'''空间有序模式 spatially ordered patterns''',<ref name="LemarchandNicolis">{{cite journal|last1=Lemarchand|first1=H.|last2=Nicolis|first2=G.|title=Long range correlations and the onset of chemical instabilities|journal=Physica|date=1976|volume=82A|issue=4|pages=521–542|doi=10.1016/0378-4371(76)90079-0|bibcode=1976PhyA...82..521L}}</ref>例如'''BZ反应 Belousov–Zhabotinsky reaction'''。由于不可逆过程而产生的具有这种物质动态状态的系统是耗散结构。