第87行: |
第87行: |
| --[[用户:ZC|ZC]]([[用户讨论:ZC|讨论]]) 【审校】“计算出的变量”改为“计算变量” | | --[[用户:ZC|ZC]]([[用户讨论:ZC|讨论]]) 【审校】“计算出的变量”改为“计算变量” |
| | | |
− | ===Noise models 噪音模型=== | + | ===噪音模型 Noise models=== |
| | | |
− | | + | 在模型中引入一个独立的噪声项,以对比两个方向的证据。下面是一些假设 Y → X 且具有噪声 E 的噪声模型: |
− | | |
− | | |
− | Incorporate an independent noise term in the model to compare the evidences of the two directions.
| |
− | | |
− | 在模型中引入一个独立的噪声项,以比较两个方向的证据。
| |
− | | |
− | | |
− | Here are some of the noise models for the hypothesis Y → X with the noise E:
| |
− | | |
− | 下面是一些假设 Y → X 且具有噪声 E 的噪声模型:
| |
| | | |
| * '''<font color='#ff8000'>加性噪声 Additive noise</font>''':<ref>Hoyer, Patrik O., et al. "[https://papers.nips.cc/paper/3548-nonlinear-causal-discovery-with-additive-noise-models.pdf Nonlinear causal discovery with additive noise models]." NIPS. Vol. 21. 2008.</ref> <math>Y = F(X)+E</math> | | * '''<font color='#ff8000'>加性噪声 Additive noise</font>''':<ref>Hoyer, Patrik O., et al. "[https://papers.nips.cc/paper/3548-nonlinear-causal-discovery-with-additive-noise-models.pdf Nonlinear causal discovery with additive noise models]." NIPS. Vol. 21. 2008.</ref> <math>Y = F(X)+E</math> |
第107行: |
第97行: |
| * '''<font color='#ff8000'>功能性噪声 Functional noise</font>''':<ref name="Mooij">Mooij, Joris M., et al. "[http://papers.nips.cc/paper/4173-probabilistic-latent-variable-models-for-distinguishing-between-cause-and-effect.pdf Probabilistic latent variable models for distinguishing between cause and effect]." NIPS. 2010.</ref> <math>Y = F(X,E)</math> | | * '''<font color='#ff8000'>功能性噪声 Functional noise</font>''':<ref name="Mooij">Mooij, Joris M., et al. "[http://papers.nips.cc/paper/4173-probabilistic-latent-variable-models-for-distinguishing-between-cause-and-effect.pdf Probabilistic latent variable models for distinguishing between cause and effect]." NIPS. 2010.</ref> <math>Y = F(X,E)</math> |
| | | |
− | 上述模型基于均基于以下假设:
| |
− | * <font color='#ff8000'>Y 不存在其他影响原因 There are no other causes of Y</font> 。
| |
| | | |
− | * <font color='#ff8000'>X 和 E 不存在共同的影响原因 X and E have no common causes</font> 。 | + | 上述模型均基于以下假设: |
| + | * <font color='#ff8000'>Y 不存在其他原因 There are no other causes of Y</font> 。 |
| + | |
| + | * <font color='#ff8000'>X 和 E 不存在共同的原因 X and E have no common causes</font> 。 |
| | | |
| * <font color='#ff8000'>原因的分布独立于因果机制 Distribution of cause is independent from causal mechanisms</font> 。 | | * <font color='#ff8000'>原因的分布独立于因果机制 Distribution of cause is independent from causal mechanisms</font> 。 |
| | | |
− | On an intuitive level, the idea is that the factorization of the joint distribution P(Cause, Effect) into P(Cause)*P(Effect | Cause) typically yields models of lower total complexity than the factorization into P(Effect)*P(Cause | Effect). Although the notion of “complexity” is intuitively appealing, it is not obvious how it should be precisely defined.<ref name="Mooij"/> A different family of methods attempt to discover causal "footprints" from large amounts of labeled data, and allow the prediction of more flexible causal relations.<ref>Lopez-Paz, David, et al. "[http://www.jmlr.org/proceedings/papers/v37/lopez-paz15.pdf Towards a learning theory of cause-effect inference]" ICML. 2015</ref>
| |
| | | |
− | 在直观的层面上,这个想法是联合分布P(Cause, Effect) 到 P(Cause)*P(Effect | Cause)的因式分解通常产生的模型的总'''<font color='#ff8000'>复杂性complexity </font>'''低于到P(Effect)*P(Cause | Effect)的因式分解。尽管“复杂性”的概念在直觉上很吸引人,但是对于如何定义它却并不显而易见。另一种不同类族的方法尝试从大量标签过的数据中发现因果的“足迹”,并且允许预测更灵活的因果关系。
| + | 在直观的层面上,联合分布P(起因,结果)到P(起因)*P(结果|起因) P(Cause, Effect) into P(Cause)*P(Effect | Cause)拆分的主意通常产生模型的总'''<font color='#ff8000'>复杂性complexity </font>'''低于将P(起因,结果)到P(结果)*P(起因|结果) P(Effect)*P(Cause | Effect)的拆分。尽管“复杂性”的概念在直觉上很吸引人,但对于应该如何精确定义它却并不显而易见。<ref name="Mooij"/>另一种不同类族的方法尝试从大量被标记的数据中发现因果的“足迹”,并且允许预测更灵活的因果关系。<ref>Lopez-Paz, David, et al. "[http://www.jmlr.org/proceedings/papers/v37/lopez-paz15.pdf Towards a learning theory of cause-effect inference]" ICML. 2015</ref> |
− | --[[用户:ZC|ZC]]([[用户讨论:ZC|讨论]]) 【审校】“这个想法是联合分布P(Cause, Effect) 到 P(Cause)*P(Effect | Cause)的因式分解通常产生的模型的总”改为“联合分布P(起因,结果)到P(起因)*P(结果|起因)拆分的主意通常产生模型的总”
| + | |
− | --[[用户:ZC|ZC]]([[用户讨论:ZC|讨论]]) 【审校】“低于到P(Effect)*P(Cause | Effect)的因式分解”改为“低于将P(起因,结果)到P(结果)*P(起因|结果)的拆分”
| + | <br> |
− | --[[用户:ZC|ZC]]([[用户讨论:ZC|讨论]]) 【审校】“但是对于如何定义”改为“但对于应该如何精确定义”
| |
− | --[[用户:ZC|ZC]]([[用户讨论:ZC|讨论]]) 【审校】“标签过”改为“被标记”
| |
| | | |
| == In statistics and economics 在统计学和经济学领域== | | == In statistics and economics 在统计学和经济学领域== |