更改

跳到导航 跳到搜索
无编辑摘要
第11行: 第11行:       −
特别是从2000年起,这个概念在生物学中被广泛应用于各种场合。<font color="#FF8000">人类基因组计划 Human Genome Project</font>是生物学中应用系统思维的一个例子,它在遗传学这个生物学领域中引入了新的协作型工作方式。。系统生物学的目标之一是模拟和发现<font color="#FF8000">细胞 cells</font>、<font color="#FF8000">组织 tissues</font>和<font color="#FF8000">有机体 organisms</font>作为一个系统运作的涌现特性,其理论描述只有使用系统生物学技术才有可能实现。<ref name="pmid21570668">{{cite book|author=Bu Z, Callaway DJ|title=Protein Structure and Diseases|volume=83|pages=163–221|year=2011|pmid=21570668|doi=10.1016/B978-0-12-381262-9.00005-7|series=Advances in Protein Chemistry and Structural Biology|isbn=978-0-123-81262-9|chapter=Proteins MOVE! Protein dynamics and long-range allostery in cell signaling}}</ref><ref name="Tavassoly 487–500"/>
+
特别是从2000年起,这个概念在生物学中被广泛应用于各种场合。<font color="#FF8000">人类基因组计划 Human Genome Project</font>是生物学中应用系统思维的一个例子,它在遗传学这个生物学领域中引入了新的协作型工作方式。系统生物学的目标之一是模拟和发现<font color="#FF8000">细胞 cells</font>、<font color="#FF8000">组织 tissues</font>和<font color="#FF8000">有机体 organisms</font>作为一个系统运作的涌现特性,其理论描述只有使用系统生物学技术才有可能实现。<ref name="pmid21570668">{{cite book|author=Bu Z, Callaway DJ|title=Protein Structure and Diseases|volume=83|pages=163–221|year=2011|pmid=21570668|doi=10.1016/B978-0-12-381262-9.00005-7|series=Advances in Protein Chemistry and Structural Biology|isbn=978-0-123-81262-9|chapter=Proteins MOVE! Protein dynamics and long-range allostery in cell signaling}}</ref><ref name="Tavassoly 487–500"/>
      第67行: 第67行:  
概览
 
概览
   −
系统生物学具有利用跨学科工具从多个实验来源获取、整合和分析复杂数据集的能力,一些典型的技术平台包括:表型组学,即生物表型在其生命周期内的变化;基因组学,即生物脱氧核糖核酸序列、包括生物内部细胞特异性变异(例如端粒长度变化);表观基因组学或表观遗传学,生命体和相应的细胞特异性转录调控因子没有经验性地编码在基因组序列中(例如 DNA 甲基化、组蛋白乙酰化和脱乙酰化等);转录组学,通过 DNA 微阵列或基因表达的系列分析来测量生物体、组织或整个细胞的基因表达; 干扰素组学,即生物体、组织或细胞水平的转录校正因子(例如RNA干扰) ; 蛋白质组学,通过二维凝胶电泳、质谱法或多维蛋白质识别技术(先进的高效液相色谱系统加上质谱法),进行生物体、组织或细胞水平的蛋白质和多肽测量。子学科包括磷酸蛋白质组学、糖蛋白质组学和其他检测化学修饰蛋白质的方法; 代谢组学,测量有机体、细胞或组织水平系统中被称为代谢物的小分子; 糖组学,有机体、组织或细胞水平的碳水化合物测量; 脂质组学,有机体、组织或细胞水平的脂质测量。<ref name=":1">{{Cite journal|last=Cascante|first=Marta|last2=Marin|first2=Silvia|date=2008-09-30|title=Metabolomics and fluxomics approaches|journal=Essays in Biochemistry|language=en|volume=45|pages=67–82|doi=10.1042/bse0450067|pmid=18793124|issn=0071-1365}}</ref>
+
系统生物学具有利用跨学科工具从多个实验来源获取、整合和分析复杂数据集的能力,一些典型的技术平台包括:表型组学,即生物表型在其生命周期内的变化。基因组学,即生物脱氧核糖核酸序列、包括生物内部细胞特异性变异(例如端粒长度变化);表观基因组学或表观遗传学,生命体和相应的细胞特异性转录调控因子没有经验性地编码在基因组序列中(例如 DNA 甲基化、组蛋白乙酰化和脱乙酰化等);转录组学,通过 DNA 微阵列或基因表达的系列分析来测量生物体、组织或整个细胞的基因表达。干扰素组学,即生物体、组织或细胞水平的转录校正因子(例如RNA干扰) ; 蛋白质组学,通过二维凝胶电泳、质谱法或多维蛋白质识别技术(先进的高效液相色谱系统加上质谱法),进行生物体、组织或细胞水平的蛋白质和多肽测量。子学科包括磷酸蛋白质组学、糖蛋白质组学和其他检测化学修饰蛋白质的方法。代谢组学,测量有机体、细胞或组织水平系统中被称为代谢物的小分子; 糖组学,有机体、组织或细胞水平的碳水化合物测量; 脂质组学,有机体、组织或细胞水平的脂质测量。<ref name=":1">{{Cite journal|last=Cascante|first=Marta|last2=Marin|first2=Silvia|date=2008-09-30|title=Metabolomics and fluxomics approaches|journal=Essays in Biochemistry|language=en|volume=45|pages=67–82|doi=10.1042/bse0450067|pmid=18793124|issn=0071-1365}}</ref>
     
330

个编辑

导航菜单