除了识别和定量化上述给定的分子之外,有进一步的技术来分析细胞内的动力学和相互作用。研究的相互作用包括生物、组织、细胞和细胞内分子的相互作用(相互作用组学)。<ref>{{Cite journal|last=Cusick|first=Michael E.|last2=Klitgord|first2=Niels|last3=Vidal|first3=Marc|last4=Hill|first4=David E.|date=2005-10-15|title=Interactome: gateway into systems biology|journal=Human Molecular Genetics|language=en|volume=14|issue=suppl_2|pages=R171–R181|doi=10.1093/hmg/ddi335|pmid=16162640|issn=0964-6906|doi-access=free}}</ref>目前,在这一领域的权威分子学科,尽管这一效用的定义并不仅仅局限于该领域,也有其它分子学科的作用。这些分子学科包括: 神经电动力学,这是一个有机体网络,其中大脑的计算功能作为一个动态系统,包括潜在的生物物理机制和新兴的电力相互作用的计算<ref>{{Cite journal|last=Aur|first=Dorian|date=2012|title=From Neuroelectrodynamics to Thinking Machines|journal=Cognitive Computation|language=en|volume=4|issue=1|pages=4–12|doi=10.1007/s12559-011-9106-3|issn=1866-9956}}</ref>;流体学,测量一个系统里分子随着时间的动态变化,如细胞、组织或有机体;<ref>{{Cite journal|last=Diez|first=Mikel|last2=Petuya|first2=Víctor|last3=Martínez-Cruz|first3=Luis Alfonso|last4=Hernández|first4=Alfonso|date=2011-12-01|title=A biokinematic approach for the co--mputational simulation of proteins molecular mechanism|journal=Mechanism and Machine Theory|volume=46|issue=12|pages=1854–1868|doi=10.1016/j.mechmachtheory.2011.07.013|issn=0094-114X}}</ref>在处理系统生物学问题时,有两种主要的方法。它们分别是自上而下和自下而上的方法。自上而下的方法尽可能多把系统考虑在内,并且在很大程度上依赖于实验结果。RNA-seq 技术是自上而下实验方法的一个例子。相反,自下而上的方法用于创建详细的模型,同时也结合了实验数据。自下而上方法的一个例子是使用电路模型来描述一个简单的基因网络。<ref>{{Cite journal|title=Application of Top-Down and Bottom-up Systems Approaches in Ruminant Physiology and Metabolism|last=Loor|first=Khuram Shahzad and Juan J.|date=2012-07-31|journal=Current Genomics|volume=13|issue=5|pages=379–394|language=en|doi=10.2174/138920212801619269|pmc=3401895|pmid=23372424}}</ref> | 除了识别和定量化上述给定的分子之外,有进一步的技术来分析细胞内的动力学和相互作用。研究的相互作用包括生物、组织、细胞和细胞内分子的相互作用(相互作用组学)。<ref>{{Cite journal|last=Cusick|first=Michael E.|last2=Klitgord|first2=Niels|last3=Vidal|first3=Marc|last4=Hill|first4=David E.|date=2005-10-15|title=Interactome: gateway into systems biology|journal=Human Molecular Genetics|language=en|volume=14|issue=suppl_2|pages=R171–R181|doi=10.1093/hmg/ddi335|pmid=16162640|issn=0964-6906|doi-access=free}}</ref>目前,在这一领域的权威分子学科,尽管这一效用的定义并不仅仅局限于该领域,也有其它分子学科的作用。这些分子学科包括: 神经电动力学,这是一个有机体网络,其中大脑的计算功能作为一个动态系统,包括潜在的生物物理机制和新兴的电力相互作用的计算<ref>{{Cite journal|last=Aur|first=Dorian|date=2012|title=From Neuroelectrodynamics to Thinking Machines|journal=Cognitive Computation|language=en|volume=4|issue=1|pages=4–12|doi=10.1007/s12559-011-9106-3|issn=1866-9956}}</ref>;流体学,测量一个系统里分子随着时间的动态变化,如细胞、组织或有机体;<ref>{{Cite journal|last=Diez|first=Mikel|last2=Petuya|first2=Víctor|last3=Martínez-Cruz|first3=Luis Alfonso|last4=Hernández|first4=Alfonso|date=2011-12-01|title=A biokinematic approach for the co--mputational simulation of proteins molecular mechanism|journal=Mechanism and Machine Theory|volume=46|issue=12|pages=1854–1868|doi=10.1016/j.mechmachtheory.2011.07.013|issn=0094-114X}}</ref>在处理系统生物学问题时,有两种主要的方法。它们分别是自上而下和自下而上的方法。自上而下的方法尽可能多把系统考虑在内,并且在很大程度上依赖于实验结果。RNA-seq 技术是自上而下实验方法的一个例子。相反,自下而上的方法用于创建详细的模型,同时也结合了实验数据。自下而上方法的一个例子是使用电路模型来描述一个简单的基因网络。<ref>{{Cite journal|title=Application of Top-Down and Bottom-up Systems Approaches in Ruminant Physiology and Metabolism|last=Loor|first=Khuram Shahzad and Juan J.|date=2012-07-31|journal=Current Genomics|volume=13|issue=5|pages=379–394|language=en|doi=10.2174/138920212801619269|pmc=3401895|pmid=23372424}}</ref> |