第43行: |
第43行: |
| We can define a triangle among the triple of vertices <math>i</math>, <math>j</math>, and <math>k</math> to be a set with the following three edges: {(i,j), (j,k), (i,k)}. | | We can define a triangle among the triple of vertices <math>i</math>, <math>j</math>, and <math>k</math> to be a set with the following three edges: {(i,j), (j,k), (i,k)}. |
| | | |
− | 我们可以将由'''<font color="#FF8000">顶点</font>'''<math>i</math>,<math>j</math>和<math>k</math>所组成的'''<font color="#FF8000">三元组</font>'''定义为一个由'''<font color="#FF8000">边 Edges</font>'''集<math>((i,j),(j,k),(i,k))</math>所组成的三角形。
| + | 我们可以通过边 Edges</font>'''集<math>((i,j),(j,k),(i,k))</math>将由'''<font color="#FF8000">顶点</font>'''<math>i</math>,<math>j</math>和<math>k</math>组成的三元组定义为一个三角形。 |
| | | |
| We can also define the number of triangles that vertex <math>i</math> is involved in as <math>\delta (i)</math> and, as each triangle is counted three times, we can express the number of triangles in G as <math>\delta (G) = \frac{1}{3} \sum_{i\in V} \ \delta (i)</math>. | | We can also define the number of triangles that vertex <math>i</math> is involved in as <math>\delta (i)</math> and, as each triangle is counted three times, we can express the number of triangles in G as <math>\delta (G) = \frac{1}{3} \sum_{i\in V} \ \delta (i)</math>. |
第49行: |
第49行: |
| We can also define the number of triangles that vertex <math>i</math> is involved in as <math>\delta (i)</math> and, as each triangle is counted three times, we can express the number of triangles in G as <math>\delta (G) = \frac{1}{3} \sum_{i\in V} \ \delta (i)</math>. | | We can also define the number of triangles that vertex <math>i</math> is involved in as <math>\delta (i)</math> and, as each triangle is counted three times, we can express the number of triangles in G as <math>\delta (G) = \frac{1}{3} \sum_{i\in V} \ \delta (i)</math>. |
| | | |
− | 我们也可以将'''<font color="#FF8000">顶点</font>'''<math>i</math>所涉及的三角形的数量定义为<math>\delta(i)</math>,并且由于每个三角形都被计数了三次,因此'''<font color="#FF8000">图</font>''<math>G</math>中三角形的个数为<math>\delta (G) = \frac{1}{3} \sum_{i\in V} \ \delta (i)</math>。 | + | 我们也可以将'''<font color="#FF8000">顶点</font>'''<math>i</math>所涉及的三角形的数量定义为<math>\delta(i)</math>,并且由于每个三角形都被计数了三次,'''<font color="#FF8000">图</font>''<math>G</math>中三角形的个数为<math>\delta (G) = \frac{1}{3} \sum_{i\in V} \ \delta (i)</math>。 |
| | | |
| Assuming that triadic closure holds, only two strong edges are required for a triple to form. Thus, the number of theoretical triples that should be present under the triadic closure hypothesis for a vertex <math>i</math> is <math>\tau (i) = \binom{d_i}{2}</math>, assuming <math>d_i \ge 2</math>. We can express <math>\tau (G) = \frac{1}{3} \sum_{i\in V} \ \tau (i)</math>. | | Assuming that triadic closure holds, only two strong edges are required for a triple to form. Thus, the number of theoretical triples that should be present under the triadic closure hypothesis for a vertex <math>i</math> is <math>\tau (i) = \binom{d_i}{2}</math>, assuming <math>d_i \ge 2</math>. We can express <math>\tau (G) = \frac{1}{3} \sum_{i\in V} \ \tau (i)</math>. |